STUDENT HANDOUT KDA-5042

E3ABP30534M 000
E3AZP30554 000

Yechnical Training

JSS DATA PROCESSOR AND DISPLAY MAINTENANCE

HMP-1116 INTRODUCTION

USAF TECHNICAL TRAINING SCHOOL

3300th Technical Training WING
Keesler Air Force Base, Mississippi

Designed For ATC Course Use

DO NOT USE ON THE JOB



HMP-1116 STUDENT GUIDE

TABLE OF CONTENTS

CHAPTER TITLE

1 INTRODUCTION TO THE HMP-1116

2 PROGRAMMING MACHINE LANGUAGE

3 PROCESSOR BLOCK DIAGRAM DESCRIPTION
4 MICROINSTRUCTION FORMATS

5 READING THE MICROPROGRAM LISTING
7 1/0 SOFTWARE PROGRAMMING

8 INTERRUPTS

9 1/0 OPTIONS (PMP, PCC, MPC, RMM)
10 MEMORY
11 POWER FAULT DETECT

APPENDIX 1. DEFINITIONS OF MNEMONICS

APPENDIX 2. MICROPROGRAM LISTING DESCRIPTION



FUNCTIONAL
BLOCK
DIAGRAM

EXTENDED
ARITHMETIC
REGISTER

/ L

MEMORY DATA

.

CORDIC
SHIFT
NETWORK

POWER
FAULT
DETECT

DOLLMOODT

[

POWER
SUPPLIES

IR

MEMORY MEMORY

MODULE MODULE

NO. 1 NO. 4

/¢
ADDRESS
[ 7/

MEMORY
INTERFACE DMA CONTROL
FUNCTION

>

>

MEMORY CONTROL/ADDRESS

PROG RAM
CONTROLLED
CLOCKS

7S

v

INPUT/OUTPUT MULTIPLEXER BUS (I/0 MUX BUS)

PROCESSOR

P MAINTE-
CONTROLLER NANCE PANEL

DMA
> BUS

1/0 MUX
BUS

HMP-1116 Computer

10-v1£91



ut

HMP-1116 COMPUTER

CHARACTERISTICS

e ARITHMETIC ..ccco0cccvicen o 0 saummses 8 Smdiaibil B 8 SGisTes % . TWO'S COMPLEMENT, INTEGER

e DATA WORD LENGTHS ............. s & sresesweTe ® eueime .... 8,16, 32, 48, AND 64 BITS

@ DATATYPES ...ccccecvecen Si% & § geieTEe 8 BeTee ¥ SEveeRe 8 FIXED-POINT AND FLOATING-
POINT

e DATAFLOW ............. osiotie ® ® scee oo 0o e wioie & Srassmibgd @ 16-BIT PARALLEL (HALFWORDS)

@ ALUWIDTH ....cccc0cecee % & § erevEenee ¥ etenetienis § b 32-BIT

e INSTRUCTION WORD LENGTH ........... SHEs 3 DS § 16 AND 32 BITS

e GENERAL RESISTERS ......... cessseasesssscsses e ns SIXTEEN 16-BIT HARDWARE
REGISTERS AND EIGHT 48-BIT
FLOATING -POINT MEMORY
REGISTERS

e STORAGE (READ/WRITE) .. ...ttt iiiereenccenncnns RANDOM ACCESS, DYNAMIC
INTEGRATED CIRCUIT, LIMITED
NON-VOLATILITY VIA BATTERY
BACKUP

e STORAGE SIZE (MAXIMUM)......c.tevteenenns o ¥ BenTEeE b 131,072 HALFWORDS (17 BITS

EACH INCLUDING ONE PARITY
BIT)



1.0 INTRODUCTION TO THE HMP-1116

The HMP-1116 minicomputer is a microprogrammable, general purpose,
digital computer providing high-speed computation and data processing.
The computer provides hardware capabilities for operating on binary data in
field lengths of 8-bit bytes, 16-bit halfwords, and optional 32-bit full words,
and 48-bit floating-point words. The computer is organized into functional
units to achieve modularity at the card level for adding optional capabilities.
The modularity allows various functional configurations without affecting
existing card designs. The degree of flexibility includes variable memory
size (128K halfwords maximum), ability to add, delete, and modify user
instructions, Real Time Counter and Elapsed Time Counter option, extension
to a 32-bit arithmetic logic unit (ALU), and Cordic shift network option
(Trigonometric function).

The purpose of the HMP-1116 is to provide the capability to execute a
program consisting of a sequence of software instructions and to communicate
with external devices (peripherals). A software instruction is a binary word
with a predefined format that the computer will recognize and execute. A
program consists of a group of software instructions. The instructions in
a program are located in consecutive memory locations.

1.1 Microsequencer. Figure 1-1 is a basic architecture of the HMP-1116
minicomputer. The central controlling function is the microsequencer
function. This function consists of the Rom Address Register, Microprogram
Memory and Rom Data Register. The Microprogram Memory is a read only
memory (ROM) and contains up to 2,048 36-bit microinstructions. The
Microprogram Memory is addressed by the Rom Address Register (RAR).
The 36-bit microinstruction read from the Microprogram Memory is loaded
into the Rom Data Register (RDR). Each microinstruction is broken into
fields which are used to control the RAR, arithmetic operations, hex digit
(4-bit) and byte (8-bit) manipulations, data movement between registers,
input /output operations, memory and software execution. The Network
Control is responsible for decoding the microinstruction in order to control
these functions.

The microinstructions are arranged in sets within the Microprogram
Memory. A set of microinstructions is called a microsequence. Each micro-
sequence is responsible for performing a specific task.

While performing a specific microsequence, the RAR will count up by 1
every 200ns. To locate the next microsequence the RAR must be loaded
with a new value. The RAR will be loaded 1) for a microprogram branch,
2) when a software instruction is to be executed or 3) on an interrupt.

The microprogram branch is implemented by taking a 12-bit field from
the RDR and loading the RAR.

1-1



There is a microsequence in the Microprogram Memory for each software
instruction. The start addresses for these microsequences are provided by
the Instruction Decode Rom.

The Instruction Decode Rom also provides the start address for the
interrupt service microsequence. Interrupts are generated from functions

external to the microprocessor. The following analogy may promote further
understanding:

Let's say you are reading this document and your phone
rings. This is an interrupt. When you answer the phone
you have acknowledged the interrupt. Your conversation is
service for the interrupt. Following your conversation you
return to reading this document. The processor performs
the same steps when receiving an interrupt. First it
acknowledges the interrupt, then it performs the necessary
service. Following this service the processor returns to its
previous duties.

If the execution of a microinstruction takes more than 200ns (1 clock
cycle), the RAR and RDR will be held until the operation is complete. Three

cases in which this hold will occur are memory operations, input/output (1/0)
operations and repeat operations.

Repeat operations are controlled by the Repeat Counter. This counter

will allow a single microinstruction in the RDR to be repeated a maximum of
31 times.

1.2 Arithmetic Logic Unit (ALU). The ALU is a 16-bit arithmetic function
which can be expanded to a 32-bit arithmetic function. The ALU is under
direct control of the microprogram and is responsible for performing all
logical and arithmetic operations. The ALU function consists of the Byte
Manipulator, Flag Register and AM2901 large scale integrated circuits (LSI).

Each AM2901 chip provides 4 bits of ALU. Therefore, a 16-bit ALU requires
four AM2901s.

The AM2901s will either perform an arithmetic or logical function, or
pass data unchanged to the A-bus output. The specific operation is
dictated by the microprogram. The AM2901s also provide 16 scratch pad
registers (internal registers) which are used by the microprogram as a work

area. There is also a Q register which is used during multiply, divide and
shift operations.

The Flag Register (FLR) is a four bit register used to indicate the
magnitude of the arithmetic result. The four bits of the FLR are called the
C, V, G and L flags.

The C (carry) flag is set when a carry out is generated from the AM2901.



The V (overflow) flag is set when 'an arithmetic overflow occurs. An
example of an overflow is when two numbers with like signs are added and
produce a result with a different sign.

The G (greater than) flag is set when the arithmetic result is greater
than zero.

The L (less than) flag is set when the arithmetic result is less than zero.

The FLR may be examined by the microprogram in order to make decisions
based on a previous operation.

The Byte Manipulator is under microprogram control. This function
allows the following operations to be performed:

1) byte exchange
2) hex digit extraction
3) no change to data

A byte exchange operation means that the 8 MSBs and 8 LSBs of a 16-bit
value on the B-bus are exchanged. The new 16-bit word is then applied to
the direct input of the AM2901.

Example of Byte Exchange:

Input from the B-bus(In hex)
Output of the Byte Manipulator

'ABCD'
'CDAB'

Hex digit extraction allows any one of the 4 hex digits of a 16-bit word
to be placed in the hex LSD position. The three hex MSDs are set to zero.

Example of Hex Digit Extraction:

Input to the Byte Manipulator(In hex) = 'ABCD'
Output of the Byte Manipulator for extracting MSD = 'OOOA'
Byte Manipulator Output for extracting second MSD = 'OOOB'
Byte Manipulator Output for extracting third MSD = '000C'
Byte Manipulator Output for extracting the LSD = '000D'

1.3 Data Movement Between Registers. Data can be transferred from an
internal or external register to an internal or external register. The register
sending data is called the source. The register receiving data is called the

destination. The source and destination registers are specified by the
microprogram.

Data is 16 bits of arithmetic or logical information. A 16-bit arithmetic
value consists of data (15 LSBs) and a sign bit (MSB). Negative values are
in two's complement and have a sign bit set high. Logical values consist of
16 bits of unsigned data.



A source register can be an internal register, the Q register, an external
register or data from an I/0O device (via the I/O transceivers). External
registers include all registers outside the dotted lines on Figure 1-1. A list
of external registers which can be specified by the microprogram as a source
is shown below.

1) Rom Data Register (RDR)

2) Rom Address Register (RAR)

3) Program Status Register (PSR)

4) Any one of the 16x16 Register File
5) Instruction Register (IR)

6) Memory Address Register (MAR)
7) Memory Data Register (MDR)

A destination register can be an internal register, the Q register, an
external register or data to an I/0 device (via the I/O transceivers). A
list of external registers which can be specified by the microprogram as a
destination is shown below.

1) Rom Address Register

2) Repeat Counter (CTR)

3) Flag register (FLR)

4) Program Status Register

5) Any one of the 16x16 Register File
6) Instruction Register

7) Memory Data Register

8) Memory Address Register

An external source register is placed on the B-bus and passes through
the Byte Manipulator to the AM2901. An external destination is loaded from
data placed on the A-bus by the AM2901.

If data is moved from one internal register to another, the source
register contents can be passed onto the A-bus, through the Rom Address
B-Bus Mux, to the B-bus, through the Byte Manipulator to the D input of
the AM2901 and loaded into the destination register. This operation will be
performed when an internal register is to be modified by the Byte Manipulator.

The Rom Address B-Bus Mux is also used when the RDR or RAR is
specified as the source. The RAR will be specified as a source if it needs
to be saved in an internal register. The RDR is specified as the source if
a field of data from the microinstruction is to be loaded into an internal
register.

1.4 MOS RAM Memory. The MOS RAM Memory is used by the programmer
to store his program and data. The memory in the HMP-1116 can be varied
in size by addition or deletion of memory cards (32K each). The maximum
memory configuration is 131,072 (128K, where 1K = 1,024) 16-bit words. For
each location in memory there are 17 bits (16 data bits plus 1 parity bit).
When a word is stored in memory, a parity bit is also stored to provide odd




parity (odd number of ls). When data is read from memory this parity is
checked. A memory cycle (time required to read or store data) is 600ns.
Since the RAM Memory is MOS type it requires a refresh cycle every

14 .8 microseconds.

There are three functions that access memory. These are listed below
from highest priority to lowest.

1) Refresh
2) DMA (Direct Memory Access)
3) Processor ‘

Processor Memory Requests

The processor uses four registers for memory operations. These are
the Memory Address Register (MAR), Memory Data Register (MDR), Instruction
Register (IR), and Program Status Register (PSR).

The Memory Address Bus is used to locate one of 128K words in memory.
The two MSBs (PSR8:9 during Instruction Fetch or PSR10:1l during Operand
Read) select one of four memory banks (32K each). The LSB of the MAR is
not sent to the bus, instead it is provided to the Byte Manipulator for
control byte operations. The remaining 15 bits of the MAR are used to
select one of 32K words within a memory bank.

MSB LSB
A|Bj|O 14 |15
—— — <~
Bank Select 1 of Byte
Select 32K Locations Control
(2 bits) (15 bits) (1 bit)

A byte operation is when an 8-bit byte is extracted from a 16-bit source

register, or when an 8-bit byte is inserted into 8 bits of a 16-bit
destination register.

In an extract operation the MDR is the source. Either the 8 MSBs or
the 8 LSBs can be selected as the byte operand. If the LSB of the MAR is
0, the Byte Manipulator selects the 8 MSBs. If the LSB of the MAR is 1,
the Byte Manipulator selects the 8 LSBs.

Byte Extraction Example

MAR LSB Byte Manipulator Input Byte Manipulator Output
0 'ABCD' '00AB'
1 'ABCD' '00CD'



In an insert operation an internal register or the MDR is the destination.
An 8-bit byte on the 8 LSBs of the B-bus is inserted into either the 8 MSBs
or the 8 LSBs of the destination register, leaving 8 bits of the destination
unchanged. If the LSB of the MAR is 0, a byte is inserted into the 8 MSBs
of the destination. If the LSB of the MAR is 1, a byte is inserted into the
8 LSBs of the destination.

Byte Insertion Example:

Destination Byte Manipulator MAR Destination
Before Input from B-bus LSB After
1234’ '0O0AB' 0 'AB 34'
'1234' '00AB' 1 '12AB'

The MDR is used to hold data read from memory or data to be written
into memory.

The IR is loaded with a software instruction read from memory. This
instruction is broken into fields. One of these fields, called the op-code,
defines the type of instruction and the operation to be performed. The
op-code is decoded by the Instruction Decode Rom to provide a microsequence
start address, which is loaded into the RAR. At this point the software
instruction will be executed by its unique microsequence residing in the
Microprogram Rom. Another field from the software instruction allows the
programmer access to the 16x16 Register File. These registers are usually
called General Registers. When the microprogram uses the 16x16 Register
File as a source or destination, the software instruction in the IR specifies
which one of the 16 registers is to be used.

DMA Memory Requests

The Direct Memory Access (DMA) port allows an external device to
address the memory and either read or write data. The DMA interface will
be discussed in detail later in this chapter.

1.5 Program Status Word. The Program Status Word (PSW) consists of
a 16-bit external register called the Program Status Register (PSR) and a
16-bit internal register which is called the Location Counter.

The Location Counter (LOC) is used by the microprogram to locate the
next software instruction in memory to be executed. Each time an instruction
is read from memory and loaded into the Instruction Register, the LOC is
incremented to point to the next instruction.

1-6



The PSR contains information that the programmer can use to control
software branching and to designate the proper memory banks in which his

program and data are located. The programmer can change the PSR by

using specific software instructions.

0 1 7 8 9 10 11 12 15 | 16 31
Wait Status | Program | Operand | Condition | Location Counter
Bank Bank Code I Ry

The PSR bit 0 (MSB) is called the Wait bit.

program execution halts.

When this bit is set,

PSR bits 1 through 7 (Status) control interrupt service.

Bits 8 and 9 of the PSR are the Program Bank address.

to select one of four banks when reading an instruction from memory.

PSR bits 10 and 11 are the Operand Bank address.

PSW 500 (2-2)

They are used

They are used to

select one of four banks when reading an operand from memory. The Program
Bank address or Operand Bank address is loaded into the two MSBs of the
MAR by the microprogram to provide the appropriate bank selection.

Bits 12 through 15 of the PSR are tne Condition Code.

loaded from the Alarm Register (4 bits) or the Flag Register (4 bits).

PSW bits 16 through 31 are the Location Counter (LOC).
stored in the 16x16 Ram Scratchpad in the AM2901.

Alarm Register

Each bit of the Alarm Register represents a specific hardware fault.

This field is

The LOC is

The LOC defines the
memory address of the next software instruction to be executed.

The

four faults that cause a respective bit in the Alarm Register to be set are
memory violation (bit 12), parity error when reading an operand (bit 13),
parity error when reading an instruction (bit 14) and power failure (bit 15).

A memory violation can occur only if the computer is equipped with the

Memory Protect Controller (MPC) option.

The MPC option allows the

programmer to designate portions of memory as protected. The software
program and DMA will be unable to write into protected memory.

1.6 Input/Output Operations.

The 1/0 Mux Bus allows the HMP-1116

to communicate with external devices (peripherals) such as magnetic tape
units, card readers or line printers.

The interface between the HMP-1116
and the peripheral is indirectly controlled by 1/0 software instructions.
The direct control is provided by the microprogram.

By using appropriate software instructions the programmer can send

commands, send or retrieve data and get status information from an 1/0



device over the 1/O Mux Bus. The software instructions specify General
Registers and memory locations that are to be used for 1/0 transfers. The
microprogram uses this information and sequentially controls I/O operations.

The HMP-1116 can communicate with one 1/0 device at a time. Each
device is assigned a unique 8-bit device address. In order to begin com-
munication, the I1/O device must first be addressed by the HMP-1116.

Figure 1-2 represents the HMP-1116 1/0 Mux Bus interface. The
interface is common to all 1/0 devices connected to the HMP-1116. All
information (device address, commands, status and data) is transferred via
the bidirectional data bus (TDOO-15). The type of information is defined by
the flag set by the computer.

The Address Flag (TADRS) is set active when the 8 LSBs (TDO08-15)
contain a device address. The device whose address is on the data lines
will respond by setting the Sync (TSYN) active. This informs the HMP-1116
microprogram that the device has received and decoded its address. This
device will now be able to receive a command, send its status or transfer
data.

The Command Flag (TCMD) is set active by the microprogram when the
? LSBs of the 1/0 Mux Bus (TD08-15) contain a command for the addressed
device. When the device receives this command it responds by setting
TSYN active.

When the Status Flag (TSR) is set active the addressed device will place
its 8-bit status on the I/O Mux Bus LSBs and set TSYN active.

The addressed 1/0 device sets the Halfword Flag (THW) active if it can
send or receive 16 bits of data at a time. If the device does not set THW
active it can only send or receive 8 bits of data at a time. The microprogram
examines THW prior to sending or receiving data.

The Data Available Flag (TDA) is set active when the I/O Mux Bus
contains data for the addressed device. Data will be either 16 bits (on
TD00-15) or 8 bits (on TD08-15) depending on the state of THW. The device
responds with TSYN when it receives the data.

When the Data Request Flag (TDR) is set active, the addressed device
will place either 16 bits (on TD00-15) or 8 bits (on TD08-15) on the 1/0
Mux Bus (depending on the state of THW) and set TSYN active.

An interrupt from an I/O device is a request for service. The Interrupt
Flag (TATN) is common to all devices connected to the I/O Mux Bus. When
TATN goes active, the computer must determine which device set the
interrupt. To accomplish this the Acknowledge Flag (TACK) is set active by
the HMP-1116. The highest priority 1/0 device that has an interrupt pending
will place its own device address on TD08-15 to identify itself as the inter-
rupting device and sets TSYN active.



DMA.BUS

INTERRUPTS

oP-
CODE

PROGRAM
STATUS
REGISTER (16)

f

+1

1/0 DATA
BUS

e

ARITHMETIC

B-BUS B-BUS
| [ 4 I [
MEMORY
ADDRESS
BUS (17) MOS RAM 16 X 16 YTE Vo
: 2 § bty oL . NETWORK CONTROL aAL!—;pULATOR PRANEEEIE RS
128K X 17 FILE (16)
DATA REPEAT r
BUS (16 ROM ADDRESS
ro (16) csouNTER 8-BUS MUX
l H = | I
: I L/R SHIFT L/R SHIFT
"D"E.'}"ERY ROM DATA MUX ux
REGISTER (16) REGISTER (36) I
y
16 X 16 RAM
MEMORY MICROPROG RAM I S ERATC DD Q-REGISTER
: INSTRUCTION :
ADDRESS R en O MEMORY
REGISTER (18) 2048 X 36 ' r— -
T D
ROM |
ADDRESS I
REGISTER (12) RIS RS

A-BUS

[} LOGIC UNIT
INSTRUCTION
DECODE /
ROM ALARM FLAG
REGISTER REGISTER
(4) (4) MUX
START
ADDRESS (AM2901)
(12) — - | c—— c— —— —
A BUS

Figure 1-1.

HMP-1116 Processor Architecture

[48 A ¥4 )



DMA INTERFACE

CONTROL LINES

MEMORY VIOLATION _1

PARITY CONTROL
PROCESSOR
INTERFACE . [PROCESSOR
CIRCUITRY - MEMORY
R/W REQ. |MEMORY - r
ENABLE |ENABLE
DMAWRITE CONTROL LOGIC st Y N TRO:
*|ano ADORESS| s
OMA pMA  |RW R/W
OMA S SONTROL —IMEMORY
v ’ REQ. ONTROL
CONTROL| fonNTROL
LOGIC REFRESH
ADDRESS
wpe  MEM.
] REFRESH
R CIRCUITRY
p
MEMORY
BATA ADDRESS
M~MORY ADDRESS BUS (i

MEMORY DATA BUS

|

IOV 4HILNI HOSS3IOOHd

PORATA: ]S

Figure 1-1A. HMP-1116 Memory Architecture

1-10



HMP-1116

INTERRUPT ACKNOWLEDGE TACK
RACK
TADRS ADDRESS
L
TCMD COMMAND TACK
TDA DATA AVAIL. RACK
TSR STATUS REQ.
TOR DATA REQ
Te =
TSYN SYNCH. TACK
TATN ATTENTION _
1 RACK
TDO00-15 DATA BUS
THW HALFWORD
e —
TACK
L]
L ]
[ ]
e
RACK
LOWEST
PRIORITY
1/0 DEVICES

brisol

Figure 1-2, HMP-1116 I/O Mux Bus Interface

1=11



1,7 1.7 DMA Interface. The Direct Memory Access (DMA) Bus allows an
external device to address HMP-1116 memory and read or write data., All DMA
devices have an I/O Mux Bus interface also, The I/0 interface provides initializa-
tion data (such as the starting address in the HMP-1116 memory) to be used by the
DMA device during data transfers, The DMA device is responsible for updating the
memory address and maintaining a word count when transferring a group of data,

Figure 1-3 represents the DMA Bus interface, The DMA Request (TDMAREQR)
is set active by the DMA device when it wants to use memory, The HMP-1116
responds with DMA Acknowledge (TEN).

DMA Read

_ When TEN is received by the device it sends a 17-bit memory address (TMAA,
TMAB, TMA00-14) to the HMP-1116, It also indicates that it wants to read from
memory by setting the Read/Write Control (TDMAWRT) inactive, The DMA Strobe
(TDMAST) will indicate that memory data is ready to be taken from the Memory
Data Bus (TMD00-15), At this time the DMA device must accept the data and
remove the memory address and Read/Write Control,

DMA Write

When TEN is received by the DMA device it places memory address, Read/
Write Control and memory data to be written into the HMP-1116 on the DMA Bus.
The DMA Strobe will indicate that data has been written into memory. Waen the
DMA Strobe is received, the device must remove memory address, Read/Write
Control and data from the DMA Bus,

S-vIL91

TOMAREQ DMA REQUEST

TEN OMA ACKNOWLEDGE

TOMAWRT READ/WRITE

TDMAST DMA STROBE
HMP-1116 - 1/0 DEVICES

TMA00-14 MEM. ADDRESS

TMAA, TMAB BANK ADDRESS

TMDO00-15 MEM. DATA BUSS

Figure 1-3. HMP-1116 DMA Bus Interface

1-12



Am2901

Four-Bit Bipolar Microprocessor Slice

DISTINCTIVE CHARACTERISTICS

16-word x 4-bit two-port RAM.

High speed ALU.

9-bit microlnstruction word.

Advanced low-power Schottky processing.

Four-bit silce cascadable to any number of bits

with full carry look-ahead.

Three-state outputs.

Shift left, no shift, or shift right entry Into RAM

from ALU.

® Output muitiplexer for direct RAM A-port access
or ALU output.

® Status flags Include carry-out, sign-bit (negative),
overfilow and zero detect.

® Four-bit Q-register for scratch pad or accumulator

extension.

Direct ALU entry to Q-register.

Shift Q-register left or rignt.
® RAM-shift and Q-shift are easlly cascadable.

GENERAL DESCRIPTION

The four-bit bipolar microprocessor slice is designed as a
high-speed cascadable element Intended for use in CPU’s,
peripheral controllers, programmable microprocessors and
numerous other applications. The microinstruction flexi-
bility of the Am2901 will allow efficient emulation of ai-
most any digital computing machine.

The device, as shown In the block dilagram below consists

of a 16-word by 4-bit two-port RAM, a high-speed ALU

and the associated shifting, decoding and multiplexing
clrcuitry. The nine-bit microinstruction word is organized
into three groups of three bits each and selects the ALU
source operands, the ALU function, and the ALU destina-
tion register. The microprocessor is cascadable with full
look-ahead or with ripple carry, has three-state outputs.
and provides various status flag outputs from the ALU.
Advanced low-power Schottky processing is used to fabri-
cate this 40-lead LSI chip.

9-p1L9l

MICROPROCESSOR SLICE BLOCK DIAGRAM

cLOCK
U SHIFT { Ro/LI
LO/RI > RAM SHIFT Q N
/
RO/L!> oA
/
A ADDRESS ,ﬁ *1 16 X 4 RAM REGISTER
READA LB [*—* RS
B ADDRESS L —e{ WRITEB
73 @
A )

DIRECT INPUT —p~,
73

SELECTOR
MICRO
INSTRUCTION
DECODE R 3
’ ) Ch+a
G
MICRO-—7L——‘ A 5
CODE 9 IN ALU +’ E5
OVR
F F=0

|

MULTIPLEXER

OUTPUT 4-71_1
4

% OUTPUT

CONTROL

Advanced Microprocessors

1-13



ARCHITECTURE

A detailed block diagram of the bipolar microprogrammable
microprocessor structure is shown in Figure 1. The circuit is a
four-Lit slice cascadable to any number of bits. Therefore, all
data paths within the circuit are four bits wide. The two key
elements in the Figure 1 block diagram are the 16-word by 4-bit
2-port RAM and the high-speed ALU,

Data in any of the 16 words of the Random Access Memory
(RAM) can be read from the A-port of the RAM as controlled by
the 4-bit A address field input. Likewise, data in any of the 16
words of the RAM as defined by the B address field input can be
simultaneously read from the B-port of the RAM. The same code
can be applied to the A select field and B select field in which case
the identical file data will appear at both the RAM A-port and
B-port outputs simultaneously.

When enabled by the RAM write enable (RAM EN), new data is
always written into the file {word) defined by the B address field
of the RAM. The RAM data input field is driven by a 3-input
muluplexer. This configuration 1s used to shift the ALU output
data (F) if desired. This three-input multiplexer scheme allows the
data to Le shifted up (right) one bit position, shifted down (left)
one Lit position, or not shifted in either direction.

The RAM A-port vata outputs and RAM B-port data outputs
Jdrive separate 4-bit latches. These latches hold the RAM data
while the clock input 1s LOW. This eliminates any possible race
conditions that could occur while new data is being written into
the RAM.

The high-speed Arithmetic Logic Unit (ALU) can perform three
binary arithmetic and five logic operations on the two 4-bit input
words R and S. The R nput field is driven from a 2-input multi-
plexer, while the S input field is driven from a 3-input multi-
plexer. Both multiplexers also have an inhibit capability; that is,
no data is passed. This is equivalent 10 a ““zero’ source operand.

Referring to Figure 1, the ALU R-input multiplexer has the RAM
A-port and the direct data inputs (D) connected as inputs. Like-
wise, the ALU S-input multiplexer has the RAM A-port, the
RAM B-port and the Q register connected as inputs.

This multiplexer scheme gives the capability of selecting various
pairs of the A, B, D, Q and "0’ inputs as source operands to the
ALU. These five inputs, when taken two at a time, result in ten
possible combinations of source operand pairs. These combin-
autions include AB, AD, AQ, A0, BD, BQ, 80, DQ, DO and QO.
It 1s apparent that AD, AQ and AQ are somewhat redundant with
8D, BQ and BO in that if the A address and B address are the
same, the identical ‘unction results. Thus, there are only seven
completely non-redundant source operand pairs for the ALU.
The Am2901 microprocessor implements eight of these pairs.
The microinstruction inputs used to select the ALU source
operands are the lg, 11, and 12 inputs. The detinition of Ig, 13,
and |17 for the eight source operand combinations are as shown in
Figure 2. Also shown is the octal code for each selection.

The two source operands not fully described as yet are the D in-
put and Q input. The D input is the four-bit wide direct data
field input. This port 15 used to insert all data into the working
registers inside the device. Likewise, this input can be used in the
ALU to modify any of .the internal data files. The Q register is a
separate 4-bit file intended primarily for multiplication and
division routines but it can also be used as an accumulator or
holding register for some applications.

The ALU itself is a high-speed arithmetic/logic operator capable
of performing three binary arithmetic and five logic functions.
The 13, 14, and I5 microinstruction inpyts are used to select the

ALU function. The definition of these inputs is shown in Figure 3.
The octal code is also shown for reference. The normal technique
for cascading the ALU of several dewces is in a look-ahead carry
mode. Carry generate, G, and carry propagate, P, are outputs of
the device for use with a carry-look-ahead-generator such as the

. Am2902 ('182). A carry-out, C;4. is also generated and is avail-

able as an output for use as the carry flag in a status register. Both
carry-in (Cq) and carry-out (C44) are active HIGH.

The ALU has three other status-oriented outputs. These are F3,
F = 0, and overflow (OVR). The F3 output is the most significant
(sign) bit of the ALU and can be used to determine positive or
negative results without enabling the three-state data outputs
F3is non-inverted with respect to the sign bit output Y3. The
F = 0 output is used for zero detect. It is an open-collector out-
put and can be wire OR‘ed between microprocessor slices. F =0
is HIGH when all F outputs are LOW. The overflow output (OVR)
is used to flag arithmetic operations that exceed the available
two’s complement number range. The overflow output (OVR)
is HIGH when overflow exists. That is, when Cn,3and Cppg are
not the same polarity.

The ALU data output is routed to several destinations. it can be a
data output of the device and it can also be stored in the RAM or
the Q register, Eight possible combinations of ALU destination
functions are available as defined by the lg, 17, and Ig micro-
instruction inputs. These combinations are shown in Figure 4.

The four-bit data output field (Y) features three-state outputs and
can be directly bus organized. An output control (OE) is used to
enable the three-state outputs. When OE is HIGH, the Y outputs
are in the high-impedance state.

A two-input multiplexer is also used at the data output sucnh that
either the A-port of the RAM or the ALU outputs (F) are selected
at the device Y outputs. This selection is controlled by the lg, 17,
and 'B microinstruction inputs. Refer to Figure 4 fcr the selected
output for each microinstruction code combination.

As was discussed previously, the RAM inputs are driven from 3
three-input multiplexer. This allows the ALU outputs to be
entered non-shifted, shifted up one position (X2) or shifted down
one position (<2). The shifter has two ports; one is labeled
RAMQg—LO/RI and the other is labeled RAM3-RO/LI. Both of
these ports consist of a buffer-driver with a three-state output
and an input to the multiplexer. Thus, in the shift up mode, the
RO buffer is enabled and the Rl multiplexer input is enabled.
Likewise, in the shift down mode, the LO buffer and LI input are
enabled. In the no-shift mode, both the LO and RO buffers are
in the high-impedance state and the multiplexer inputs are not
selected. This shifter is controlled from the Ig, I7, and Ig micro-
instruction inputs as defined in Figure 4.

Similarly, the Q register is driven from a 3-input multipiexer. In
the no-shift mode, the multiplexer enters the ALU data into the
Q register. In either the shift-up or shift-down mode, the muiti-
plexer selects the Q register data appropriately shifted up or
down. The Q shifter also has two ports; one is labeled Qg—LO/R!I
and the other is Q3-RO/LI. The operation of these two ports is
similar to the RAM shifter and is also controlled from ig, |7, and
Ig as shown in Figure 4.

The clock input to the Am2901 controls the RAM, the Q register,
and the A and B data latches. When enabled, dsta is clocked into
the Q regyister on the LOW-to-HIGH transition of the clock. When
the clock input is HIGH, the A and B latches are open and wili
pass whaleser data is present at the RAM outputs. When the
clock input 15 LOW, the latches are closed and will retain the
last data entered. If the RAM-EN is enabled, new dJdata will be
written into the RAM file (word) defined by the B address field
when the clock input is LOW.

1-14



RO/

—<'s
.—(l,

<la

RAM RAM
LO/RI 1 RO/LY
3N 3N
MUX MUX
, a [
A, o, o, do > 1 [ I
A
AaroRD. a2 16-WORD BY 4.817 2.PORT RAM e | | r
2 > —<%; { 3in 3N 3N 3N
Ay AOAIA ce ‘,o.,'uzu’ HB’ 1 MUX MuUX ux MUX
0 )
o 1 0. O
A 8 LATCH
CLOCK 3
< >—-Do— E A, cp Q REGISTER QEN
0%1%2%,
Q
I 9 9, 2 )
Oy
virect |
DATA n?
INPUTS 1
Yo | I
z-mH 24N 3N 3N 3N A AL
MUX MUX MUX MUX MUX |
e SOURCE
OPERAND
DECODE
it | | |
3 ALY
>—{FUNC N N R S, s, S, <G
'a TION v —< P
R OECODE ARITHMETIC LOGIC UNIT (ALU) < ChvA
2 ¥ ovr
3 0

Tantt

S1An >_4>
CONT HOL

or

CI-1

Figure 1.

Detailed Am2901 Microprocessor Block Diagram

LvTLIT




MICRO ALU SOURCE MICRO CODE
£ho.cons OPERANDS _—
OCTAL SYMBOL
2 o 10 |9SEN | R s 's 'a '3 |cope | FUYNCTION
L L L [ A Q L L L 0 R PLUS S R+S
L L H 1 A 8 L L H 1 S MINUS R sS—R
(i H L 2 o Q L H L 2 R MINUS S R—S
L H H 3 o ] L H H 3 RORS RVS
H L L 4 (] A H L L 4 R AND S RAS
H L H 5 ) A H & H s “KANDS ®As
H H L 6 o Q H H L 6 REXORS Ry S
H H H 7 o} o H H H 7 R EXNOR S RS
Figure 2. ALU Source Operand Control Figure 3. ALU Function Control
RAM Q-REG. RAM Q
MICRO CODE FUNCTION FUNCTION v SHIFTER | SHIFTER
| | 1 OCTAL ouTPUT[RAM [RAM;|Qy Q3
8 7 6 |cooe SHIFT LOAD SHIFT LOAD _ormilLizro |Losri|Lizro
ALU
L L L 0 - — NONE (F) F z z z 2
L L H 1 - - - F z z z b4
ALU -
L H [ 2 NONE Fn A 2 2z 2z z
L H H 3 NONE =y - F z z z z
LEFT ALU LEFT Q-REG P N R
H - ¥ * (DOWN) (Fier) | (DOowN) | (Qjy) £ ° 3| % 3
LEFT ALU _ =
W e B 5 | owny | (Fiep F o | ™Na| Qo | Ny
RIGHT ALU RIGHT Q-REG N F
. 8 5 ¢ | we (Fi-1) wey | @) Fo ™o "3 ™o] %
RIGHT ALU
H H H 7 (UP) (Fi1) - F INg Fi INg | Q3
Z = HIGH-IMPEDANCE
Figure 4. ALU Destination Control
+ = PLUS; — = MINUS; V= OR; A= AND; ¥= EX-OR
Ll L L L H H H H
R,S 'i taalias|Hoa|lHoe|rLo.a|lLD,AalHD,Q|HD O
H [ H L H L H
1 1,1,C o —
0 0 1 2 3 a 5 6 7
LLLL A+Q A+B 8 A D+A D+Q o}
R PLUS S * Q *
H A+Q+] A+Q+] Q-+l B+1 A+l D+A+1 | D+Q+1 D+1
LLHL Q—-A—-1 |B—-A-1 Q-1 8—1 A—1 |A—-D—1|@—-D—1| —D-—1
S MINUS R a-A
H B8=A Q 8 A A—D Q-0 -0
LHLL A—-Q—-1 [aA—8—1| —@—1 | —8—1 |—A—1 |D—A-1 [D—G—1 0—1
R MINUS S
H A—Q A-8 -Q -8 —-A D—A o—-Q o]
LHHL
RORS AVQ AVB Q 8 A DVA ova D
H
HLLL
R AND S AAQ AAB o 0 o DAA oAQ [
H
HLHL
RANDS AAQ AAB Q ] A BAA oY [\
H
HHLL
R EX-OR S AVQ AYS9 Q B A DYA ovYQ [s]
H
HHHL o — XS =T i s R
R EX-NOR § AvYQ AV Q -] A OvAa | OvQ o
H

Figure 5. Source Operand and ALU Function Matrix

1

8vIL9l



SOURCE OPERANDS AND ALU FUNCTIONS

As discussed earlier, there are eight source operand pairs
avallable to the ALU as selected by the Ig, I3, and 12 Instruc-
tion Inputs. The ALU can perform eight functions; five loglc
and three arithmetic. The I3, I, and Ig Instruction Inputs
control this function selection. The carry input, Cp, also af-
fects the ALU results when In the arithmetic mode. The Cp
Input Is Innibited In the logic mode. When Ig through I and
Cp are viewaed togetner, the matrix of Figure 5 resuits. This

The ALU functions can also be examined on a ‘‘task'’ basis,
l.e., add, subtract, AND, OR, stc. In the arithmetic mode, the
carry will affect the function performed while in the logic
mode, the carry will have no bearing on the ALU output.
Figure 6 defines the various logic operations that the AmM2901
can perform and Figure 7 shows the arithmetic functions of
the device. Both carry-in LOW (Cp = 0) ana carry-in HIGH
(Cp = 1) are defined In these operations.

matrix fully defines the ALU/source operand function for
each state.

OCTAL FUNC-
Is 14 1312 110 |15 430210| SROVP | Tion
100000 a0 A AQ
001 41 A AB
l 101 as AND 15 An
110 a6 oAQ
011000 30, AvaQ
l 001 3 or |AVB
101 s o VA
110 36 ova
110000 60 AvQ
l 001 61 Ex-OR |AV¥8B
101 65 D YA -
110 66 ova OCTAL fa=9 Ca
s 1a'312 W lo [1sa3,210 [crour| FYNE" GROUP FUNC-
111000 70 . |Ava ——— — AL el
001 71 AvE A+Q A+Qel
l 6 1 i | FENIR D:A l 001 o1 | apo A+8 | ADD PLUS | AsB-1
1146 76 VG 101 05 D+A ONE D+A+1
110 06 D+Q D+Q+1
111010 72 Q TETET S
0 8 Q Q+1
l 1 ; ; ;i INVERT ; 011 03 | Pass 8 INCREMENT| 8+1
111 77 [+ 100 04 A A+l
rtl 07 o} D+1
110010 62 Q -
011 63 1010 > B Q—1 Q
100 64 PASS i ‘ 011 13 |CECRE} g, PASS 8
111 67 o 100 14 |MENT A—1 A
010111 27 o—1 o}
011010 32 Q
l 011 33 e 8 010010 22 1's —Q—1 -Q
100 34 A ‘ 011 23 | come.| &1 2's COMP. —5
111 37 D 100 24 —A—1 -A
001111 17 —0—1 -0
100010 a2 0
l 011 a3 |.,epon| © 001000 10 [sus |a-a—1 a—A
100 aa 0 001 11 [TRACT|[B—A—1 SUBTRACT 8—A
111 a7 o l 101 15 |as A—D—1 (2's comP) | . o
110 16 |COMP)Iq p—) Q-0
101000 50 AAQ 010000 20 A—Q--1 A—Q
001 51 i 18e 1 001 21 A—8—1 A—8
101 55 B AA 101 25 o—A—1 D-A
110 56 DAQ 110 26 o0—Q-1 o—

FIGURE 6. ALU LOGIC MODE FUNCTIONS

FIGURE 7. ALU ARITHMETIC MODE FUNCTIONS

6-v1L91

1-17



CONNECTION DIAGRAM
TOP VIEW

o
OEY Y Y. Yo pOVch¢4G FaGNDC l4l I D D 02 D3 LO/R!

nnnnnnnnnnnnnnnnnnnn

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21

Am2901

8 9 10 11 12 13 14 15 16 17 18 19 20

ﬂﬁﬁy IRIRIgIRIIRIRegIgIgs

Ju

“DCw
s

- P
3 A2 ‘e 's 7 VecF=0 1p 1) 1, €P Q5 B, B, 8, By
RAM;  RAM, RO/LI
RO/LI  LO/RI

NOTE: PIN 11S MARKED FOR ORIENTATION

FINAL DATA. THE PRELIMINARY DATA SHEET PRINTED 3-75 HAD PINS 5 AND 6 INTERCHANGED AND
PINS 12 AND 14 INTERCHANGED WHEN COMPARED WITH THE ABOVE CONNECTION DIAGRAM.

OT-v1L91

ORDERING INFORMATION

PACKAGE TEMPERATURE ORDER
TYPE RANGE NUMBER
HERMETICDIP  0°C TO +70°% AM2901DC
DICE 0°c 1o +70%¢ AM2901XC
HERMETICDIP  -55°C TO +125%¢ AM2901DM
DICE -55%¢ 10 +125°% AM2901XM

FURTHER INFORMATION

IF ADDITIONAL PRELIMINARY TECHNICAL INFORMATION IS REQUIRED, CONTACT THE NEAREST AMD
SALES OFFICE OR CALL THE FACTORY IN SUNNYVALE, CALIFORNIA AND ASK FOR

JOHN SPRINGER

MARKETING MANAGER

BIPOLAR MICROPROCESSOR CIRCUITS

(408) 732-2400 OR TOLL FREE FROM OUTSIDE CALIFORNIA (800) 538-7904 OR 538-7989

1-18



61-1

S ——
A

o

FUNCTION

8.0 "A® nco
DISPLAY 1 DISPLAY 2 By €
— R6-7 . RE-F
——] [ s QN
— e —— —_ - - A2-17 i INSTR
.
Ro-1 ' psw
OFF/
''''''''''''''''''''''' ~ MWR

EEFEEREEL: FEPIKTS
; LJLJJ@JQJJJQLJ@JMLJ@/

\

TT-vTL9T

HMP-1116 Maintenance Panel



HMP-1116 MAINTENANCE PANEL OPERATION

TURN-ON PROCEDURE

1. Turn Key Switch to ON

2. All pushbuttons (MEMORY TEST, PROGRAM LOAD, BREAKPOINT,
SINGLE and RUN) should be off (unlit)

3. Press MASTER CLEAR

SPECIFYING A MEMORY ADDRESS

1. All pushbuttons off, FUNCTION SWITCH to ADRS/M RD

2. Enter desired address in the DATA /ADDRESS switches

3. Press EXECUTE; DISPLAY 1 = Program Status Register,
DISPLAY 2 = Location Counter

WRITING TO MEMORY

1. Select address to be written to by performing steps 1 thru 3 of
"Specifying a Memory Address"
2. SINGLE on, FUNCTION SWITCH to OFF/M WR
3. Enter desired data in the DATA /ADDRESS switches
4. Press EXECUTE; DISPLAY 1 = Address + 2 written to,
DISPLAY 2 = Data w:-itten
5. To write into sequential memory locations, repeat steps 3 and 4

READING FROM MEMORY

1. Select address to be read from by performing steps 1 thru 3 of
"Specifying a Memory Address"
2. SINGLE on
3. Press EXECUTE; DISPLAY 1 = Address + 2 read from,
DISPLAY 2 = Data read
4. To read from sequential memory locations, repeat step 3

READ GENERAL REGISTER OR PSW

1. Al pushbuttons off
2. Select pair of Registers or PSW on FUNCTION SWITCH
3. Press EXECUTE; DISPLAY 1 = Even numbered Register or Program
Status Reg.
DISPLAY 2 = Odd numbered Register or Location
Counter

READ FULLWORD (INSTRUCTION) FROM MEMORY

1. Select address to be read from by performing steps 1 thru 3 of
"Specifying a Memory Address"
2. FUNCTION SWITCH to INSTR
3. Press EXECUTE; DISPLAY 1 = Contents of memory location
specified by address
DISPLAY 2 = Contents of memory location
specified by address+2

1-20



RUN A PROGRAM

1.
2

3.

Specify the start address of the program by performing steps 1 thru 3
of "Specifying a Memory Address"

RUN on, FUNCTION SWITCH to any position except ADRS/M RD or
OFF/M WR

Press EXECUTE

RUN A PROGRAM IN SINGLE STEP

1.
2.
3

Perform steps 1 and 2 of "Run a Program"

SINGLE on

Press EXECUTE; DISPLAYS 1 and 2 will contain whatever the
FUNCTION SWITCH specified (Register Pair,
Updated PSW or next Instruction)

To execute successive instructions repeat step 3. The FUNCTION

SWITCH can be changed between EXECUTE switch actions to select

what will be displayed after the next instruction is executed.

RUN A PROGRAM IN BREAKPOINT

Ls
2.

3.

Perform steps 1 and 2 of "Run a Program"
BREAKPOINT on, enter instruction address in DATA /ADDRESS
switches
Press EXECUTE; DISPLAY 1 = Specified breakpoint address
DISPLAY 2 MSD = 3 (if breakpoint was reached)
DISPLAY 2 LSDs = Instruction at breakpoint address

NOTE: Displays described in step 3 will only occur if the breakpoint

address is reached; the MSD of DISPLAY 2 is the breakpoint

indicator. Processor will stop before instruction at breakpoint
address is executed.

PROGRAM LOAD USING THE 50-SEQUENCE LOADER

e

3]

D O

Perform operations required to prepare loader device (i.e. Put tape

on Mag Tape Unit (MTU) and place MTU On-Line.)

PROGRAM LOAD on, all other pushbuttons off

Set DATA/ADDRESS switches to 'XXYY' where 'XX' is the loader

device address, and 'YY' is command for device (i.e. '85A1' for MTU)

Press MASTER CLEAR

PROGRAM LOAD off, RUN on

Press EXECUTE; Program will load from specified loader device.
Remainder of procedure will be determined by the
program loaded.



PROGRAM LOAD OPTION USING DEVICE ADDRESS 100"

1. Perform operations required to prepare loader device
2. PROGRAM LOAD and RUN on, all other pushbuttons off, FUNCTION
SWITCH to PSW
3. Set DATA/ADDRESS switches to '000X' to specify loader device (see
table below)
4. Press MASTER CLEAR; Program will load and run. Remainder of
procedure will be determined by the program

loaded.
X! DEVICE SPECIFIED
0 Device Status Check
1 Mag Tape
2
3 Floppy Disc
4 Disc Load
5
6
7

1-22



MEMORY TEST

The Memory Test consists of four tests; 1) DATA, 2) GALPAT,
3) ADDRESS, and 4) ADDRESS.

The DATA test writes a fixed data pattern in all tested memory locations.
The data pattern to be used is initially in DISPLAY 2.

The GALPAT test generates a pseudo-random data pattern from the value
initially in DISPLAY 2. This text writes to a memory location and then
changes adjacent locations in memory to see if the tested location is affected.

The ADDRESS test writes the address of a location into that location.
For example, load location '0123' with '0123'.

The ADDRESS test writes the one's complement of the address of a
location into that location. For example, load location '0123' with 'FEDC"'.

Executing the memory test is broken into five steps; 1) enter the test
mode, 2) select portion of memory to be tested, 3) select test data (for DATA
and GALPAT tests only), 4) select and start test (either DATA, GALPAT,
ADDRESS or ADDRESS) and 5) run test in either the "Continuous" or the
"Stop on Error" mode.

When you enter the test mode, DISPLAY 1 will indicate the size of memory
as shown in the table below:

CONTENTS OF NUMBER OF SIZE OF MEMORY
DISPLAY 1 MEMORY CARDS (1K = 1,024 Halfwords)
10000 1 32K
20000 2 64K
30000 3 96K
00000 4 128K

The "Continuous" mode continually tests the selected memory locations
and maintains an error count.

The "Stop on Error" mode tests the selected memory locations until the
first error occurs and then halts.

The memory test performs the following operation on each location tested,
"read-check-write". Therefore, on the first pass through memory using new
test data every "read-check-write" will result in an error being detected.
This is why you wait a few seconds when running the "Stop on Error" mode,
you are allowing time enough for the new test pattern to fill memory before
allowing a stop on error to occur. This is also why you stop and restart in
the "Continuous" mode, this is to clear out the error count after the new
data has filled memory.

1-23



Zl-vIL91

“MEMORY TEST" ON (LIT)

J

ENTER
TEST

)

MODE

—

PRESS MASTER CLEAR

( (TOTEST A

SECTION OF MEMORY)

(TO TEST ALL
OF MEMORY)

(TO TEST A SINGLE
MEMORY LOCATION)

[ Funcrion switcrh TO “psw' |

©) I

ENTER LO-BOUND ADDRESS
IN DATA/ADDRESS SWITCHES

il

SELECT
PORTION

OF MEMORY <
TO BE TESTED

[ PRESS EXECUTE

) o1: Lo-80oUND

[ FUNCTION SWITCH TO "“RO-1""

J

ENTER HI-BOUNO ADDRESS
IN DATA ADDRESS SWITCHES

il

]Jo1 - r-BOUND

t

L | PRESS EXECUTE

| “sinGLE™ ON (LIT) ]

[FuncTioN swiTCH TO o ]

]

Dl = TEST
ADDRESS

ENTER TEST ADDRESS
IN DATA ADDRESS SWITCHES

| PRESS EXECUTE

: SELECT TEST DATA

(NOTE. THESE STLPS
ARE ONLY DONE FOR
GALPAT OR DATA
TESTS)

(TOSTART
ADDRESS TEST,

(WANT TEST DATA
OTHER THAN *'1234Y)

(WANT TO USE *1234°
AS TEST CATA)

—

| FUNCTION SWITCH TO “INSTR"

)

|

ENTER TEST DATA IN
ODATA/ADDRESS SWITCHES

[PRESs ExecuTe |02

t

1EST DATA

M‘ EST)

(TOSTART
DATA TEST)

(TOSTARTY
GALPAT TEST)

©

SELECT AND
START TEST

FUNCTION SWITCH

i

FUNCTION SWITCH

I FUNCTION swnrcnl I

FUNCTION SWITCH
TO "R2-3"

(NOTE: WAIT 7O, "R6-7* TO "R8-9* TO “RA-B"
LIGHT OFF 7 7
INDICATES
TEST IS PRESS EXECUTE | pressexecute | [ PreEssExecute | [ PRESSEXEcuTE |
RUNNING) ‘
TO RUN IN TO RUN IN
( “CONTINUOUS™ MODE “STOP ON ERROR" MODE
| FUNCTION SWITCH TO “RC-D" | [ WAIT A FEW SECONDS |

PRESS EXECUTE

O1 = LAST ADDRESS TESTED
D2 = TEST WORD USED

S

OSE
“CONTINUOUS™

RESTART SELECTED TEST ]
BY REPEATING STEP &

OR “STOP ON
ERROR MOOE"

TO STOP
’

YES

Tanr~ o |

| FUNCTION SWITCH TO "Ra.5"

_J

| PrESS EXECUTE

D1 = LAST ADDRESS TESTED
D2 = ERROR COUNT

|

| "RUN“ON (LIT)

IFUNCTION SWITCH TO "OFF /MWR"

PRESS EXECUTE

D1 - LAST ADORESS TESTED
D2 = TEST WORD USED

—

[FuncTion swiTcH TO *ADRS/MRD™]

PRESS EXECUTE

Ol * ADDRESS THAT FAILED
D2 : EXPECTEDQACTUAL

HMP-1116 Memory Test

1-24



2.0 PROGRAMMING IN MACHINE LANGUAGE

2.1 Introduction. A program is a set of software instructions. These
software instructions are arranged in a logical manner in order to perform the
data manipulations necessary to solve a problem. The software instructions
are loaded into consecutive memory locations. The Program Status Word
(PSW) controls which instruction will be executed next and contains the status
of the program. The format of the PSW is:

0 1 7 8 9 10 11 12 15 16 31
Wait Status | Program Operand | Condition | Location Counter
Bank Bank Code

When the PSW is loaded the Wait bit (PSW bit 0) will determine if the
software program will be executed. Wait = 1 means halt. Wait = 0 means
execute the software program.

The Status bits (PSW bits 1 through 7) control interrupts.

The Condition Code consists of four flags; the Carry flag (PSW bit 12),
the Overflow flag (PSW bit 13), the Greater Than Zero flag (PSW bit 14) and
the Less Than Zero flag (PSW bit 15). The four flags are normally abbreviated
as C, V, G and L, respectively. The Condition Code is set by a previously
executed software instruction.

The computer has an 18-bit memory address. Since the basic word length
in the computer is 16 bits, special control is provided for the two MSBs of
the memory address. These two bits are specified by either bits 8 and 9, or
bits 10 and 11 of the PSW. They are called the memory bank address.

The next instruction to be executed is located in the bank specified by
the Program Bank address (PSW bits 8 and 9), and the location within that
bank is specified by the Location Counter (PSW bits 16 through 31). If a
software instruction is using a memory location as an operand, the bank that
operand is located in is specified by the Operand Bank address (PSW bits
10 and 11).

Memory is organized in 16-bit words. When the processor accesses
memory 16 bits of data are transferred. The processor can handle a word
from memory as a 16-bit halfword or as two 8-bit bytes. To aid the program-
mer in handling data as bytes, the processor assigns two memory addresses
to each memory location. The two addresses assigned to a location are an
even/odd pair of numbers. For example, the first halfword in memory is
assigned memory addresses '00000' and '00001'. Using either address will
result in accessing the same 16 bits in memory. If the programmer is using
the first halfword in memory as a 16-bit operand, he would refer to it as
memory location '00000'. If the programmer is using the first halfword in
memory as two 8-bit operands, he would refer to the 8 MSBs as '00000' and
to the 8 LSBs as '00001'.



o

PROGRAM STATUS WORD

PROGRAM STATUS BITS
N

LOCATION COUNTER
A

(] 1 2 3 4 5 6 7 8 9 10 11

12 13 14 15 "16

PROG JOPERAND
wT | 1 [Mm] DF | AS | FP CT | PM BANK |BANK

st
bt EF

c|vieGltL APPEND TO PROG BANK FOR INSTRUCTION ADDRESS

BIT 0 SET TO 1 = WAIT MODE e e
BIT 0 SET TO 0 = NORMAL OPERATION

BIT 7 SET TO 1 = PROTECT MODE
BIT 7 SET TO 0 = SUPERVISOR MODE

MEMORY REGION,

LESS THAN Pontr Coil Dot
GREATER THAN o’ Cragtevet

OVERFLOW  oop by crrsr (apore

/ S h C
CARRY ()&( g~ IA/)
SAVE Memory Vi

64K BYTE MEMORY MODULE
(4 MAX.) WHERE DATA IS
ACCESSED

64K BYTE MEMORY MODULE
(4 MAX.) WHERE
INSTRUCTIONS ARE FETCHED

A
' N
PSW BITS

8-11 INSTRUCTION DATA
0000 0-FFFF 0-FFFF
0001 0-FFFF 10000-1FFFF

. L] o

o ° °

L L] L]
0100 10000-1FFFF 0-FFFF
0101 10000-1FFFF 10000-1FFFF

L] L] L]

o L) L)

° ° L]
1111 30000-3FFFF 30000-3FFFF

8ITO WAIT STATE (WT)

BIT 1 EXTERNAL INTERRUPT ENABLE (El)

eIT2 MACHINE MALFUNCTION INTERRUPT ENABLE (MM)

BIT3 FIXED POINT DIVIDE FAULT INTERRUPT (DF)

BIT4 £)mei” AUTOMATIC I/O AND IMMEDIATE INTERRUPT ENABLE (AS)
BIT S5 FLOATING POINT FAULT INTERRUPT ENABLE (FP)

BIT 6 Systrm @' CHANNEL TERMINATION INTERRUPT ENABLE (CT)

BIT 7 PROTECT MODE (PM)

BITS 8 AND 9

BITS 10 AND 11
BITS 12 THRU 15

PROGRAM BANK ADDRESS (PB)
OPERAND BANK ADDRESS (OB)
CONDITION CODE (CC)

ET-¥TLIT

Figure 2-1. Program Status Word



2.2 Software Instruction Formats. A software instruction is either a
16-bit halfword or a 32-bit fullword. The instruction is divided into groups
of bits called fields. There are four software instruction formats. The
8 MSBs of all instructions is called the op-code (OP). The OP field specifies
the instruction format and the operation to be performed. These halfword
or fullword instructions are called the computer's machine language.

SHORT FORMAT (SF) 0 7 8 111215
OP R1* N

The operands in an SF instruction are a General Register in File 1
specified by the R1 field and an immediate operand specified by the N field.
A 16-bit immediate operand is created by setting the 3 MSDs (Most Significant
Hex Digits) to zero and using N as the LSD (Least Significant Hex Digit).

The General Register specified by R1 is the destination (where the result is
placed).

REGISTER TO REGISTER (RR) 0 7 8 111215
oP R1* R2

The operands in an RR instruction are two General Registers in File 1
specified by the R1 and R2 fields. The General Register specified by R1
is normally the destination.

REGISTER IMMEDIATE (RI) 0 7 8 11121516 31
OoP R1 X2 12

The operands in an RI instruction are a General Register in File 1
specified by the R1 field and an immediate operand dictated by the I2 and
X2 fields. The 16-bit immediate operand is calculated by adding the 16-bit
12 field to the General Register specified by the X2 field. The register
specified by the X2 field is called an index register. If the X2 field is
zero, I2 alone is used as the immediate operand; in other words, no indexing
will occur. The General Register specified by R1 is the destination.

REGISTER INDEXED MEMORY (RX) 0 7 8 11121516 31
OP R1 X2 A2

The operands in an RX instruction are a General Register in File 1
specified by the R1 field and a memory location dictated by the A2 and X2
fields. The address of the memory location to be used is calculated by adding
the 16-bit A2 field to the General Register (Index Register) specified by X2.
If the X2 field is zero, no indexing will occur. Normally the General Register
specified by R1 is the destination.

* In some branch instructions R1 is replaced by the M1 field. The M1
field is compared bit for bit with the Condition Code to determine if the
branch is to be taken. When an instruction branches, the instruction
specifies the location of the next instruction to be executed.

¥
w



2.3 Basic Instruction Set. For a complete description of the software
instruction set, see Chapter 2 of the Technical Manual.

In the following examples the notation used to describe the operation
performed is:

(Reg. X) is read "the contents of General Register X"

PSW(8:9) is read "PSW bits 8 through 9"

11234’ is a Hexadecimal quantity

['2000'] is read "the contents of memory location 2000"

is read "is replaced with"

LOAD IMMEDIATE SHORT (LIS) 0 7 8 111215
24 R1 N (SF)

This instruction causes the General Register specified by R1 to be
loaded with '"000N'.

Example: (Reg. 7)=-—"0002'

Load General Register 7 with '0002'.

LOAD HALFWORD IMMEDIATE (LHI) 0 7 8 11121516 31
Cs8 R1 | X2 12 (RI)

This instruction causes the General Register specified by R1 to be
loaded with an immediate field specified by 12 plus the General Register
specified by X2.

Example: [C8[2[0]0040 | (Reg. 2)=—'0040'
Load General Register 2 with '0040'. This instruction has no indexing.

Example: (C8| 5|1 |12AB| (Reg. 5)=—'12AB' + (Reg. 1)

Load General Register 5 with the sum of '12AB' and the contents of
General Register 1.

LOAD HALFWORD (LH) 0 7 8 11121516 31
[ 48 [ R1 | x2 | A2 (RX)

This instruction causes the General Register specified by R1 to be
loaded from a memory location specified by A2 and X2. The bank in memory
used is specified by PSW(10:11).

Example: [48[A]0[1000 | (Reg. A)<—['1000']
Load General Register A from memory location '1000'. No indexing.

Example: [48]0]A[2000 | (Reg. 0)«—['2000' + (Reg. A)]




Load General Register 0 from memory. The address of the memory
location is calculated as '2000' plus the contents of General Register A.

STORE HALFWORD (STH) 0 7 8 11121516 31
490 | R1 | x2 | A2 | (RX)

This instruction cause the General Register specified by R1 to be stored
in a memory location specified by A2 and X2. The bank in memory used is
specified by PSW(10:11).

Example: |40 |E|F |02D0| ['02D0' + (Reg. F)]«—(Reg. E)

Store General Register E in memory. The memory location is determined
by adding the index register (General Register F) to '02D0'.

ADD IMMEDIATE SHORT (AIS) 0 ¢ 8 111215
26 R1 N (SF)

This instruction causes the immediate operand '000N' to be added to the
value currently in the General Register specified by R1.

Example: | 26 |B| 5 [ (Reg. B)«—(Reg. B) + '0005'

Add '0005' to the contents of General Register B and store the result in
General Register B.

SUBTRACT IMMEDIATE SHORT (SIS) 0 7 8 111215
| 27 [ RL N (sP)

This instruction causes the immediate operand '000N' to be subtracted
from the value currently in the General Register specified by R1.

Example: | 27|C|F| (Reg. C)=—(Reg. C) - '000F'

Subtract '000F' from the contents of General Register C and store the
result in General Register C.

LOAD PROGRAM STATUS WORD (LPSW)
0 7 8 11121516 31
C2 0 X2 A2 (RX)

This instruction causes the PSW to be loaded from memory. The memory
location is specified by the X2 and A2 fields. The R1 field is set to zero
and has no effect on this instruction.

Example: | C2(0| 0| FO08| PSW(0:15)=—['F008']
PSW(16:31)«—['F00A"']

2-5



Load the PSW from two consecutive memory locations. The first memory
location is specified by 'F008' and it is loaded into the 16 MSBs of the PSW.
The second memory location is 'F00A' and it is loaded into the 16 LSBs of the
PSW.

COMPARE HALFWORD (CHR) 0 7 8 111215
09 R1 R2 (RR)

This instruction algebraically compares the 16-bit operands in the General
Registers specified by R1 and R2. The data in the two registers is unchanged
as a result of this instruction. The G and L flags in the Condition Code
indicate if the contents of the register specified by R1 are greater or less
than the contents of the register specified by R2.

Example: | 09|(4|9| (Reg. 4) : (Reg. 9) (: means compared to)

This instruction causes the contents of General Register 4 to be compared
to the contents of General Register 9. The contents are treated as two's
complement operands. Both operands are unchanged. The G flag indicates
that register 4 was greater than register 9. The L flag indicates that
register 4 was less than register 9.

BRANCH ON FALSE BACKWARDS SHORT (BFBS)
0 7 8 111215
22 M1 D (SF)

The M1 field is compared bit for bit with the Condition Code. If none of
the bits set in M1 match flags set in the Condition Code the condition is
called false and a branch will be taken. When the branch is taken the branch
address is calculated as the location of the BFBS instruction minus two times
the D field. This is called relative addressing because the branch address
is calculated relative to the location of the branch instruction.

Example: | 22|2|4 | If G flag not set, PSW(16:31)«—PSW(16:31) - '0008
If G flag is set, PSW(16:31)«—PSW(16:31) + '0002'
(No branch)

The M1 (mask) in binary is 0010, and it is compared bit for bit with the
flags CVGL in the Condition Code. If a flag set to 1 in the Condition Code
corresponds to a 1 set in the mask, the condition is called true. Since only
one bit is set in the mask field in this instruction only one flag will determine
if the branch is to be taken, the G flag. If the G flag is not set, then the
condition is false and the branch address is calculated as the Location
Counter minus two times the D field ('4'). If the G flag is set, then the
condition is true and the Location Counter is incremented by two to point at
the next consecutive instruction, (Note: In all instructions the Location Counter
is automatically incremented to point at the next consecutive instruction,)



BRANCH ON TRUE FORWARDS SHORT (BTFS)
0 7 8 111215
21 M1 D (SF)

The M1 field is compared bit for bit with the Condition Code. If any of
the bits set in M1 match flags set in the Condition Code the condition is
called true and a branch will be taken. The relative branch address is
calculated as the Location Counter plus two times the D field.

Example: | 21| 3|F | If G or L set, PSW(16:31)«-PSW(16:31) + '001E’
If G and L not set, PSW(16:31)«—PSW(16:31) + '0002’
(No branch)

Either the G or L flags being set will be a true condition and a relative
branch will be calculated as the Location Counter plus '001E' (two times
'00F').



—— -
1 Lo

=] ] 1 2 3 4 S 6 7 9 B8 C o E F
0 A x x x x X 2] x x x
1 X A x x A 8 - x x x & v x
2 x A x x A x P Y x x L
3 x x x A x Q [=] x x Q
4 C A C J A x o] (- [ x o
S E E A € E J A A € Z
6 C -] c L. A Z (o4 Z -
7 C 8 C w A Z C 2 lad
L) A A - [N A A [N [N F4 A 2 ' x
9 F F M M F F M “ 2 F Zz 1 x
A B8 B N N -] 8 N N Z 8 z C x
8 8 8 N N 8 B8 N N Z 8 Z C x
c x x N N x x N N x - x 2]
o] x x N N x x N N 2 2] 2 lal
E -] x -] r4 ' r4 '
F -] x 8 2z ' r4 1

TO FIND WHAT EFFECT AN INSTRUCTION HAS ON THE CONDITION COOE, USE THE TWO HEX
OIGITS OF THE OP CODE TO FIND THE APPROPRIATE ENTRY IN THE MAP. THE LETTER FOUND
!N THE MAP CORRESPONDS TO ONE OF THE DESCRIPTIONS BELOW.

A, clviGc|L
X|xlofo OPERAND IS ZERO
Xx|x|o]1} OPERAND IS LESS THAN ZERO
X|x|1]0 OPERAND 1S GREATER THAN 2ERO
8. |clv]a]L
x[x|ofo RESULT IS ZERO
X|x|o|1 RESULT IS LESS THAN 2ERO
F. CiVv|G|L
x|x|1]o RESULT IS GREATER THAN ZERO =) 3 I
X{1|Ix|x ARITHMETIC OVERFLOW xIxlo |2
1IX|Xx]|x CARRY / BARROW
X|ix|) |o
1 X |x|x
0 X |x|x
c. Jelv]aic
X|x|o|o LOGICAL RESULT 1S ZERQ
x|x|o]|12
xIxl1lo LOGICAL RESULT IS NOT ZERO G. |clviG]|L
ofx|ofo
1xfo ]2
1ix]1}o0
O. ClVvi|G|L
0= o]l
x|[x]o|o NONE OF THE BITS OF THE RESULT SET slxhils l
x|x o1 81T 0 OF THE RESULT SET
Xix{1j|o ONE OR MORE OF BITS ]| THRU 18 OF THE RESULT SET
. lelvie|L
o lo|o
e |c|v]s]|: PR
x|x]o|o FIRST OPERAND EQUAL TO SECOND OPERAND 515 1o
x|x o1
FIFIND FIRST OPERAND NOT EQUAL TO SECOND OPERAND |0
1 x| x|x FIRST OPERAND LESS THAN SECOND OPERAND
0 IX|x|x FIRST OPERAND EQUAL TO OR GREATER THAN SECOND OPERAND
O. V-FLAG INDICATES Y = 2 « O OR IvD ZI n clvia|c
P. V-FLAG INDICATES RESULT > '7FFF FFFE* 00 |o
Q. V-FLAG INDICATES XK V| oot
X. FLAGS UNCHANGED o1 [o
Y. NEW FLAGS DETERMINED BY PSW LOADED ]
Z. 1/O INSTRUCTION V FLAG NORMALLY INDICATES TIMEOUT 1

(FALSE SYNC) 33 us€C

o

=)

)

ojo |o|n

olo|-|<

~lo oo

olofo[r

x [xx[xo
~ loJole]<

ol-[o|olo

ojJol=]|o]lr

o~ Jo |n

X |IX |x |<

~lo o |o

o= lo |r

~loje|ofe]e Jo |n

=f=|=]=lo]eo o |<

x|o|=le|=[<[o o

x|o|o|~|o|~|o]|r

RESULT IS ZERO
RESULT IS NOT ZERO
RESULT 1S NOT ZERO
LAST BIT THAT WAS SHIFTED OUT WAS A ZERO
LAST BIT THAT WAS SHIFTED OUT WAS A ONE

RESULT 1S ZERO
RESULT IS LESS THAN ZERO

RESULT IS GREATER THAN ZERO

LAST 81T THAT WAS SHIFTED OUT WAS A ZERO
LAST BIT THAT WAS SHIFTED OUT WAS A ONE

FIRST OPERAND EQUAL TO SECOND OPERAND

FIRST OPERAND LESS THAN SECOND OPERAND

FIRST OPERAND GREATER THAN SECOND CPERAND

FIRST OPERAND LESS THAN SECOND OPERAND

FIRST OPERAND EQUAL TO OR GREATER THAN SECOND OPERAND

FIRST OPERAND EQUALS SECOND OPERAND

FIRST OPERAND LESS THAN SECOND QPERAND

FIRST OPERAND GREATER THAN SECOND OPERAND

LIST OVERFLOW
ELEMENT ADDED SUCCESSFULLY

vIi-vIL9T"

LIST WAS ALREADY EMPTY
LIST IS NOW EMPTY
LIST IS NOT YET EMPTY

ZERO

LESS THAN ZERO
GREATER THAN ZERO
EXPONENT UNDERFLOW

OPERANCS EQUAL
FIRST LESS THAN SECOND
FIRST GREATER THAN SECOND

RESULT 1S ZERO

RESULT LESS THAN ZERO
RESULT GREATER THAN 2ERO
OVERFLOW (NEGATIVE)
OVERFLOW (POSITIVE)
UNDERFLOW

OIVISOR EQUAL TO ZERO*

* DIVISION ONLY

2-3



NOTE:

CHANGING PSW PROCEDURES

There are times when you cannot execute your Program in
the HMP-1116 due to a PSW that causes your Program to not
run, i.e. OPERAND BANK ADDRESS set to wrong bank.
There are ways to insure this does not happen.

Write zeros into the entire memory prior to loading your program
(MEM Test with '0000' as test data).

Always check your PSW prior to loading your program to insure
proper Bank address (PSW10-11).

If you do not do these first two steps and determine that the
PSW bits 10-11 are not set properly after you loaded your
program, you can change your PSW without destroying your
program.

Step 1: Load the instruction 'E100' into a memory
location not being used, for example
address '1000'.

Step 2: Load your desived PSW into memory location
'009A' (normally '0000').

Step 3: Load the address of the instruction in
step 1 into memory location '009C', in this
example '1000'.

Step 4: Execute the instruction loaded in step 1.

You now have changed your PSW by executing a
supervisor call instruction.



2.4 Sample Programs in Machine Language

PROGRAM #1

Write a program that will add 2 plus 2.

The first step in writing a program is making a flowchart of the software
instructions required to solve the given problem. A flowchart is extremely
helpful in organizing your approach to solving a problem and in explaining
to others what your program is doing.

START

with

Load Reg. 0

12|

Reg.

Add '2' to

0

Load PSW to
Halt Program

A Load Immediate Short (LIS) can be used to place
the first '2' in General Register 0.

An Add Immediate Short (AIS) can now be used to
add '2' to the '2' in General Register 0.

When a program has completed solving a problem it
must either halt or go to another program.

(Reg. 0)<—(Reg. 0) + '0002'

PSW(0:15)=—['1008']
PSW(16:31)=—["'100A"]

Wait bit set will halt program

New Location Counter

MEMORY MEMORY INSTRUCTION
LOCATION CONTENTS MNEMONIC COMMENTS
1000 2402 LIS (Reg. 0)=—"0002'
1002 2602 AIS
1004 C200 LPSW
1006 1008
1008 8000 S i
100A 1000 s
PROGRAM #2

Write a program to transfer memory locations '1000' through '1020' to
memory locations '2000' through '2020', respectively.

A total of 17 memory locations are to be transferred. This could be done
with 17 load and 17 store instructions, but that would be rather cumbersome.
A simpler solution is to use indexed memory addressing and branching so that
one load and one store instruction can be used for all 17 transfers.

2-10



In this program I initialize the index to '0020' and decrement it by '0002'
after each data transfer. The first transfer will be of memory location '1020'
into '2020', and the last data transfer will be '1000' into '2000'. After the
last transfer the index register will contain zero, when it is decremented by
'0002' it will become 'FFFE'. Since the result is a negative number the L flag
will be set. Therefore, I will use the L flag as an indicator that the data
transfers have been completed.

Flowchart for Program #2

:
;
&
el ' Initialize the index register to '0020' Use
LHI instruction.
Load General Register 2 from the memory
LEAn pEn 2rnaM location specified by '1000' plus the contents
'1000° + (REG. 1) of General Register 1 (the index register).
‘ Use LH.
STORE REG. 2 IN Store General Register 2 in the memory
20004 [Rea o location specified by '2000' plus the contents
of General Register 1 (the index register).
Use STH.
e Subtract '2' from the index register.
Use SIS.

_ If the L flag is set all transfers are finished
so halt. Since we want to branch backwards
when the L flag is not set we use a BFBS

Ve instruction.
HALT Use LPSW.




MEMORY MEMORY INSTRUCTION

LOCATION CONTENTS MNEMONIC COMMENTS
1000 C810 LHI (Reg. 1) = '0020'
1002 0020
1004 4821 LH (Reg. 2) —['1000' + (Reg. 1)]
1006 1000
1008 4021 STH ('2000' + (Reg. 1)] = (Reg. 2)
100A 2000
100C 2712 SIS (Reg. 1) = (Reg. 1) - '0002'
100E 2215 BFBS If L = 0, branch to '1004'
1010 C200 LPSW PSW(0:15) « ['1014']
1012 1014 PSW(16:31) - ['1016']
1014 8000 - - - Halt Program
1016 1000 =EE

2.5 Basic Instruction Set Summary

L. Load Instructions

A. Load Byte - LB, LBR

B. Load Complement Short - LCS

C. Load Halfword - LH, LHI, LHR, LHO, LH1, LH2, LH3
D. Load Immediate Short - LIS

E. Load Multiple - LM

II. Store Instructions

A. Store Byte - STB, STBR
B. Store Halfword - STH, STHO0, STH1, STH2, STH3
C. Store Multiple - STM

III. PSW Control

. Exchange Program Status - EPSR

. Exchange Operand Bank Address - EPOR
. Exchange Program Address - EPPR

. Load Program Status Word - LPSW

oQw»



IV,

VI.

VII.

VIII.

Fixed-Point Arithmetic

A. Add Halfword - AH, AHI, AHR, AHM

B. Add Immediate Short - AIS

C. Add with Carry Halfword - ACH, ACHR

D. Divide Halfword - DH, DHR

E. Multiply Halfword - MH, MHR

F. Multiply Halfword Unsigned - MHU, MHUR
G. Subtract Halfword - SH, SHI, SHR

H. Subtract Immediate Short - SIS

I. Subtract with Carry Halfword - SCH, SCHR

Shift and Rotate

A. Rotate Left Logical - RLL

B. Rotate Right Logical - RRL

C. Shift Left Arithmetic - SLA, SLHA

D. Shift Left Logical - SLL, SLHL, SLLS
E. Shift Right Arithmetic - SRA, SRHA

F. Shift Right Logical - SRL, SRHL, SRLS
Logical

A. And Halfword - NH, NHI, NHR

B. Compre Halfword - CH, CHI, CHR

C. Compare Logical Halfword - CLH, CLHI, CLHR
D. Compare Logical Byte - CLB

E. Exclusive-Or Halfword - XH, XHI, XHR

F. Or Halfword - OH, OHI, OHR

G. Test Halfword Immediate - THI

Branch

. Branch and Link - BAL, BALR

. Branch on False - BFC, BFCR, BFBS, BFFS
. Branch on True - BTC, BTCR, BTBS, BTFS
. Branch on Index High - BXH

. Branch on Index Low or Equal - BXLE

moQw»

Input /Output

. Acknowledge Interrupt - AI, AIR

. Autoload - AL

. Output Command - OC, OCR

. Read - RB, RBR, RD, RDR, RH, RHR
Sense Status - SS, SSR

Write - WB, WBR, WD, WDR, WH, WHR

MEO QW

2-13



IX. List Processing

A. Add to List - ABL, ATL
B. Remove from List - RBL, RTL

X. Miscellaneous
A. Exchange Byte - EXBR
B. Supervisor Call - SVC
C. Simulate Interrupt - SINT
Note on how to read the basic instruction set summary:

X . Function - Instruction Mnemonic(s)

2.6 General Notes

1. The PSW format is described on Page 2-2,

2. When doing a byte oriented RX instruction, an even address
specifies the 8 MSBs of a halfword in memory, and an odd address
specifies the 8 LSBs of a halfword in memory.

3. BTFS op-code is '21'. BTBS op-code is '20'.

2-14



3.0 PROCESSOR BLOCK DIAGRAM DESCRIPTION
Introduction

Figure 3-1 is the Detailed Functional Block Diagram of the HMP-1116.
Each block on Figure 3-1 has a number in the lower right corner. This is
a reference to the Functional Schematics in Chapter 6. For example, the
Rom Address Register on Figure 3-1 has a "2" in the lower right corner
indicating that the RAR is on page 2 of the Functional Schematics. The
three letter mnemonics in the bottom of each block indicate the circuit
board in the HMP-1116 chassis that contains that function.

The basic HMP-1116 consists of a Microsequencer, 16-bit Arithmetic
Logic Unit, Registers and Control Logic, Memory and Input/Output (I1/0).

3.1 Microsequencer and Sequence Control. The Microsequencer controls
the following major functions:

1) Software Instruction Decode

2) Arithmetic Logic Unit

3) Data Movement between Registers
4) Processor Memory Operations

5) I/0O Operations

The microsequencer consists of the RAR, Microprogram ROM, RDR, RAR
Branch and Load Control and Multiple Clock Cycle Control.

The RAR normally increments every 200ns to provide access to another
microinstruction in the Microprogram ROM. The RDR is loaded every 200ns
with the new microinstruction. The clocks that control incrementing the
RAR and loading the RDR are shown below.

cLk2 [ L L [ M RAR Clock

CLKO0 M ML M [1_ RDR Clock

The microprogram consists of 36-bit microinstructions which are
arranged in sets within the Microprogram ROM. Each set of microinstructions
performs a specific function. Each microinstruction is divided into fields

based on unique 4-bit Op-codes (QRD00-03). There are five microinstruction
formats:

1) Register to Register (RR)
2) Immediate to Register (RI)
3) Control (CTL)

4) Input/Output (I0)

5) Branch (BR)



3.1.1 RAR Load Operations. The RAR is loaded when a new micro-
sequence is required to perform a specific task (i.e. microbranch, RAR
specified as destination, software instruction decode, interrupt). The Load
Control (XLDRAR) from the RAR Branch and Load Control causes a 12-bit
value to be loaded into the RAR. This 12-bit value is a Branch Address
(QRD20-31) or A-bus data (XBA04-15), The selection of a Branch Address or
A-bus data is also performed by the BAR Branch and Load Control, The
Multiple Clock Cycle Control provides extra clock cycles if a microinstruction
cannot be executed within the 200ns clock cycle,

3.1.1.1 Microbranch. Branch microinstructions may be conditional or
unconditional. A conditional branch means that the FLR (Flag Register) is
compared bit by bit to a 4-bit Mask field(QRD16-19) located within the BR
microinstruction. If the condition is met a 12-bit Branch Address (QRD20-31)
from the Branch microinstruction is loaded into the RAR. There are four
types of Branch microinstructions, and each one has a unique 4-bit Op-code.
The four types of BR microinstructions are:

1) Branch Condition True; if Mask AFLR
QRD20-31—=RAR

any true then

2) Branch Condition False; if Mask AFLR
QRD20-31—RAR

all false then

3) Branch Indexed False; if Mask A FLR = all false then
QRD20-31 + Scratch Reg. —=RAR

4) Branch and Link; Unconditional, Current RAR —Scratch Reg
QRD20-31—RAR

Branch Condition True/Branch Condition False

The RAR Branch and Load Control examines the microinstruction Op-code
and compares the FLR and Mask. If the condition is met, the Load RAR
(XLDRAR) is generated along with the RAR data select (XSRARD) to allow
QRD20-31 to be loaded into the RAR.

Branch Indexed False(BIF)

During this microinstruction execution the Mask and FLR are compared.
If the condition is false, QRD20-31 are added to the contents of an internal
register specified in the BR microinstruction. The sum is then loaded into
the RAR from the A-bus. Since the RAR is the destination and an arithmetic
operation must be performed in the AM2901, the operation requires an extra
clock cycle for completion.

3-2



The Branch Address is passed through the Rom Address B-bus Mux and
on to the B-bus (12 LSBs). The data then passes through the Byte
Manipulator to the direct input of the AM2901. The scratch register specified
by the BIF microinstruction is added to the direct input, and the output of
the AM2901 is loaded into the RAR via the A-bus. The RAR Branch and Load
Control generates XLDRAR and, in order for the A-bus to be selected, it sets
RAR Data Select inactive (-XSRARRD = H).

The extra clock cycle required is provided by the Multiple Clock Cycle
Control. The RAR Branch and Load Control generates XRDSA when a BIF
microinstruction is in the Rom Data Register (RDR). This signal is used by the
Multiple Clock Cycle Control to set QSMTH (Single /Multiple Time Hold), and
to generate ROM Data Stop (XRDSTP). QSMTH inhibits the RAR count by
disabling XCNTRAR (RAR Count Enable) and is used by the RAR Branch and
Load Control to allow XLDRAR to be generated at the appropriate time.

Branch and Link (BLK)

To execute this microinstruction the current RAR and current FLR are
saved in a scratch register specified by the BLK microinstruction, and the
Branch Address (QRD20-31) is loaded into the RAR. This microinstruction
is an unconditional branch (i.e. there is no Mask:FLR comparison). Since
the RAR is the implied source =nd destination an extra clock cycle is required.

The RAR is gated through the Rom Address B-bus Mux and on to the
B-bus 12 LSBs. The FLR (QCSV,QOVF,QG,QL) is gated on to the B-bus
4 MSBs at the same time. This information is passed through the Byte
Manipulator to the D input of the AM2901 and is loaded into the scratch
register specified by this BLK microinstruction.

The new RAR value QRD20-31 is selected and loaded into the RAR by the
RAR Branch and Load Control.

The RAR Branch and Load Control generates XRDSA when decoding the
BLK microinstruction. This signal is used by the Multiple Clock Cycle Control
to generate XRDSTP and QSMTH, QSMTH disables XCNTRAR and allows the
RAR Branch and Load Control to generate XLDRAR at the appropriate time,

3.1.1.2 RAR Specified as Destination. A microinstruction may specify
the RAR as a destination register. One example of this operation is a return
statement. This type of microinstruction is used following execution of a
microsequence located by a BLK microinstruction. During execution of a
Branch and Link microinstruction the current value of the RAR is saved in a
scratch register. In order to link back to the microinstruction immediately
following the BLK microinstruction, the return statement increments the
RAR value which was saved in a scratch register and loads this value into
the RAR.

3-3



The RAR Branch and Load Control receives RAR specified -
(XXEQRAR,XYEQRAR) and selects the A-bus data and generates XLDRAR
Since the RAR is the destination an extra clock cycle is provided by the
Multiple Clock Cycle Control.

3.1.1.3 Software Instruction Decode/Interrupts. The RAR is loaded
when a software instruction is decoded. There are two steps required to
execute a halfword (16-bit) software instruction and three steps required to
execute a fullword (32-bit) software instruction. These steps are implemented
by executing CTL microinstructions using the DC field (QRD18-19).

16-Bit Software Execution

When a 16-bit software instruction is executed the two steps are IFCH
(check for interrupts) and SFDC (execute the software instruction).

Step 1

A microinstruction with DC = IFCH allows the Instruction Decode ROM to
check for interrupts (XINTRPT) from the Interrupt Control Logic. If an
interrupt is detected the Instruction Decode ROM will place a 12-bit RAR
value onto the A-bus which is the Start Address of the interrupt service
microsequence. The RAR Branch and Load Control causes this value to be
loaded into the RAR.

XINTRPT is active as one of the following conditions occurs:

1) Machine Malfunction (XMALF)
a. Parity error on read operation
b. Power failure
c. Memory Protect violation
2) Program Load Interrupt (XFST)
3) Primary Power Failure (XPPF)
4) Panel EXECUTE pushbutton pressed (XCATN)
5) Panel in SINGLE mode (XNGL)
6) External Interrupt (TATN)

Step 2

If no interrupts are detected the Instruction Decode ROM produces a
12-bit RAR that is the Start Address of a two-microinstruction microsequence
called the Common Instruction Fetch Point, The first microinstruction
inerements the Location Counter by 2. The second microinstruction is a
CTL with DC = PFDC. This allows Instruction Register bit one (QIR01) to
be examined. The second MSB of the software Op-code (QIR01) defines the
length of the software instruction. In the case of 16-bit software instructions
QIR01 = 0. This causes the Instruction Decode ROM to perform an SFDC
decode which generates a 12-bit Start Address of the microsequence that will
perform the data manipulation specified by the software instruction.

3-4



32-Bit Software Execution

When a 32-bit software instruction is executed the three steps are IFCH
(check for interrupts), PFDC (fetch second half of software instruction from
memory) and SFDC (execute the software instruction).

Step 1

Same as 16-bit software execution.

Step 2

As was stated in Step 2 of 16-bit software execution, the microprogram
sets DC = PFDC. QIRO01l is set for 32-bit software instructions. This causes
the Instruction Decode ROM to perform a PFDC decode which generates the
12-bit Start Address of the microsequence that will get the second half of
the software instruction from memory. The PFDC routine also increments the
Location Counter by 2 and performs any required indexing and additional
reads from memory necessary to set up the second operand of the software
instruction.

Step 3

At the end of the PFDC routine a CTL microinstruction has DC = SFDC.
This causes the Instruction Decode ROM to generate the Start Address of
the microsequence used to execute the 32-bit software instruction.

3.1.1.4 Abort Type Interrupts. The Interrupt Control Logic generates
QNPT (Abort Software Execution) if the microprogram has enabled Abort
type interrupts and one of the following interrupts occurs:

1) Machine Malfunction
2) Program Load Interrupt
3) External Interrupt

Abort type interrupts are only enabled when a software instruction
requires a long microsequence for execution (i.e. Trigonometric software
instructions). This type of interrupt does not require a microinstruction
with DC = IFCH, QNPT actually forces an IFCH decode. Since QNPT
interrupts occur during software execution they cause the software
instruction execution to be aborted. QNPT forces the Instruction Decode
ROM to place the 12-bit Start Address of the QNPT service routine on the
A-bus. QNPT also causes the RAR Branch and Load Control to generate
XLDRAR.

The QNPT service routine sets the Location Counter back to point at
the aborted software instruction and then services the interrupt. After
the interrupt service is complete, the execution of the aborted software
instruction is started over.

Interrupts are discussed further in Chapter 8.

3-5



3.1.2 RAR/RDR Control During Repeat Operations. The Repeat Counter
provides control to allow a single microinstruction to be executed a maximum of
31 times. To perform a repeat operation the following steps are executed by
the microprogram:

1) Load the Repeat Counter with the number of repeat cycles
2) CTL microinstruction sets repeat enable (QRD17)

The Repeat Counter and Control produces ROM Data Stop_Enable
(XERDSTP) when the Repeat Counter is enabled by QRD17. XERDSTP goes
to the Multiple Clock Cycle Control to set ROM Data Stop (XRDSTP) active.
XERDSTP also sets QSMTH (Single Multiple Time Hold) to disable the RAR
Count Enable (XCNTRAR). The RAR and RDR are held until the repeat
operation is completed.

The Repeat Counter (CTR) can also be used to repeat a microsequence
up to 31 times. The CTR is first loaded with the number of repeat cycles.
The last microinstruction of the microsequence to be repeated is a Branch on
Condition True (BCT) with a mask of zero. This BCT microinstruction will
generate XBCM2 (Special Branch) if the CTR is greater than one, and it
causes the CTR to be decremented by one. QRD17 is not used in this type
of repeat operation.

3.1.3 ROM Address B-Bus Mux. The ROM Address B-bus Mux has
four functions. Two were previously described; 1) placing the Branch
Address (QRD20-31) on the B-bus for a BIF microinstruction and 2) placing
the FLR and RAR on the B-bus when the RAR is the source of data (i.e.
BLK microinstruction). The other two operations are 1) when executing an
RI microinstruction and 2) placing the A-bus on the B-bus.

When an RI microinstruction is decoded the ROM Address B-bus Mux
places QRD24-31 (Data field) on the 8 LSBs of the B-bus. Zeros are
placed on the 8 MSBs of the B-bus.

The A-bus is enabled to the B-bus by the ROM Address B-bus Mux for a
special operation which allows an internal register (in AM2901) to be modified
by the Byte Manipulator and loaded back into another internal register. The
data path begins at General Register File 2, the A output is sent directly
to the A-bus, by-passing the Arithmetic Logic Unit (ALU). The data on the
A-bus passes through the ROM Address B-bus Mux to the B-bus and then
down to the Byte Manipulator. The output of the Byte Manipulator is placed
on the D input of the AM2901 and is sent through the ALU and loaded into
General Register File 2. Due to the excessive length of the data path used,
two clock cycles (400ns) are allowed to complete this type of operation.

3.2 Arithmetic Logic Unit. The ALU in the basic HMP-1116 is 16 bits,
but it is normally expanded to a 32-bit ALU. The arithmetic function includes
the Byte Manipulator, A-Address Mux, ALU Input Code Decoder, AM2901

LSI circuit and Flag Register. All of these sub-functions are controlled by
the microprogram.

3-6



3.2.1 Byte Manipulator. The Byte Manipulator controls modification of
B-bus data before it is presented to the D input of the AM2901. The Byte
Manipulator is controlled by the MOD field (QRD17-19) of an RR, RI or IO
microinstruction. The MOD field can specify no change to the 16-bit operand
or byte exchange, byte insertion, byte extraction or hex digit extraction
operations.

3.2.2 A-Address Mux. The A-Address Mux allows one of two registers
(X or Y fields) specified by a microinstruction to be used as the A address
input to the AM2901. Normally the Y field is used as the A address and the
X field provides the B address to select internal registers in the AM2901.
The AM2901 specification in Chapter 1 defines the possible operations and
operand selections available (page 1-17). The selectable operands do not
include operations between a register specified by the B address and the D
input. The A-Address Mux exchanges the roles of the X and Y fields to
allow the microprogram to perform operations between the D input and (effec-
tively) a register specified by the B address.

The A-Address Mux determines the operands selected by examining the
ALU Input Control (AIC) field of a microinstruction. The AIC field
(QRD04-08) defines the operands and arithmetic or logical function to be
performed by the AM2901.

3.2.3 ALU Input Code Decoder. This sub-function receives the 5-bit
AIC field and provides the 6-bit field (XALUIO-5) required by the AM2901
to select operands and arithmetic or logical operations.

3.2.4 AM2901 LSI Circuit. The basic HMP-1116 has a 16-bit ALU, but
it is usually expanded to a 32-bit ALU. The expansion is accomplished by
adding an ARC card. The ARC card contains a 16-bit ALU which is

considered to be the 16 LSBs of the 32-bit ALU. The D input to the ARC
AM2901 is taken directly off the B-bus.

The AM2901 receives ALU Output Control (AOC) from the microprogram.

This field corresponds to the ALU destination control outlined in Chapter 1,
page 1-16.

The signal XLRXX is the output enable of the AM2901. The RAR Branch
and Load Control uses XLRXX to disable the ALU output when the Instruction
Decode ROM places a 12-bit Start Address on the A-bus.

3.2.5 Flag Register (FLR). The FLR provides an indication of the
relative magnitude of an arithmetic result. The four bits of the FLR are
designated as C (Carry), V (Overflow), G (Greater than zero) and L
(Less than zero). These flags can be examined by the microprogram to make
decisions (i.e. microbranch).

3-7



3.3 Register and Control Logic. The Register Control Logic decodes
the X field (QRD12-15) and the Y field (QRD27-30) of a microinstruction to
select the appropriate external source and destination registers. Registers
can be internal (in AM2901) or external. QRD16 set indicates the Destination
is External (DE) and QRD31 set indicates that the Source is External (SE).
When an external register is specified as a destination, it is loaded from the
A-bus. An external register specified as the source places its contents on
the B-bus.

3.3.1 General Register File 1. This register file provides 16 general
purpose registers for use by the software programmer. The microprogram can
select the file as source or destination. The specific register is selected by
R1, R2 or X2 field of the software instruction being executed (QIR08-15),

3.3.2 Program Status Register (PSR)

The PSR is indirectly controlled by the software programmer, Figure 2-1
on page 2-2 of the Manual defines the 32-bit Program Status Word (PSW), The
PSR contains the 16 MSBs of the PSW, The Condition Code field (bits 12-15)
can only be loaded from the FLIR or the Alarm Register.

3.3.3 Flag Register (FLR). The FLR, as was previously stated, provides
an indication of the relative magnitude of the result of an arithmetic operation.
When a software instruction specifies an arithmetic operation, the microprogram
will execute the software instruction by executing a specific microsequence.
The microinstruction which actually performs the arithmetic operation sets
the flags in the FLR and the last microinstruction in the microsequence
causes the FLR to be loaded into the Condition Code of the PSR. This
provides the programmer with an indication of the relative magnitude of the
result of executing his software instruction.

The microprogram also has the capability of loading the FLR from the
four LSBs of the A-bus (FLR is destination). This gives the microprogram
the capability of inspecting any bit in any register by placing it into the FLR.

3.3.4 Alarm Register. The Alarm Register is a four bit register that is
loaded into the Condition Code if one of the following failures occurs:

1) Memory Violation

2) Parity Error (Operand Read)
3) Parity Error (Instruction Read)
4) Early Power Failure

These failures are called Machine Malfunctions and can cause a Machine
Malfunction Interrupt (XMALF).



3.3.5 Other External Registers. The Memory Address Register (MAR),
Memory Data Register (MDR) and Instruction Register (IR) are part of the
Processor to Memory Interface and are described in 3.4. The Repeat Counter
is defined in 3.1.2.

3.4 Processor Memory Operations. The microprogram controls
processor access to memory. The sub-functions shown in Figure 3-1 that
are used by the processor during memory operations are:

1) Memory Address Register

2) Memory Bank Extension Control
3) Memory Data Register

4) Instruction Register

5) Memory Interface and Timing

3.4.1 Memory Address Register (MAR). The 15 MSBs of the MAR select 1
of 32K memory locations within a bank of memory. The LSB (QMAR15) is
used for byte insert/byte extract operations, and is not used to address
memory. The load control (XLDMAR) allows the A-bus to be loaded into
the MAR.

3.4.2 Memory Bank Extension Control Logic. The Memory Bank Extension
Control Logic provides memory bank controls (TMAA,TMAB) to select 1 of

4 banks of memory. The bank bits (TMAA,TMAB) are set according to the
operation to be performed.

If an operand is to be written or read to/from memory, PSR bits 10 and 11
(QPSW10-11) are loaded into the bank control logic.

If an instruction is to be read from memory, QPSW08-09 are selected.

_ When using the Maintenance Panel to enter a memory address, TDMA-
TDMB are loaded from the 1/0 Mux Bus.

The store to bank and load from bank software instructions allow the
programmer to access any bank of memory independent of the setting of
QPSW10-11. During the execution of these software instructions, a micro-
instruction will set the bank controls by loading them from XBA06-07.

3.4.3 Memory Data Register (MDR). The MDR is loaded with memory
data during a read operation, and during a write operation the contents of
the MDR are stored in memory.

The MDR load controls (XLDMDRU,XLDMDRL) allow byte insert
operations (i.e. change only one byte in memory). These two load controls
from the Register Control Logic allow the MSBs (XLDMDRU active) or LSBs
(XLDMDRL active) to be loaded from the A-bus. If byte operations are not
being performed and the MDR is to be loaded from the A-bus, both
XLDMDRU and XLDMDRL will be active.



The MDR is loaded from the Memory Data Bus (TMDO00-15) during
processor read operations by XLDMDRM from the Memory Interface and
Timing.

3.4.4 Instruction Register (IR). The IR is loaded with instructions
read from memory by XLDIRM. After the IR is loaded, the contents will
represent either a 16-bit software instruction or the first half of a 32-bit
software instruction.

QIR0 7 8 11 12 15
EXAMPLE 1 OP R1 R2 RR Software Instruction
QIR0 7 8 11 12 15
EXAMPLE 2 oP R1 X2 First half of RX or RI Software

Instruction

The software instructions allow the programmer to specify arithmetic or
logical operations by selecting a unique software Op-code. The programmer
also specifies general registers to be used by the microprogram during
execution of the software instruction.

The software Op-code (QIR00-07) is used by the Instruction Decode ROM
to locate the appropriate microsequence in the microprogram. General
Registers in File 1 are selected by QIR08-15.

A microinstruction can specify the IR as the destination register. When
the Register Control Logic decodes that the IR is the destination register, .
it generates XLDIR which causes the IR to be loaded with data from the A-bus.

3.4.5 Memory Interface and Timing. There are three functions that can
access the MOS RAM memory. These functions are (from highest to lowest
priority) Refresh, DMA and Processor. The priority of memory access and
basic memory timing are performed within the memory function (Figure 10-1,
Chapter 10). The Memory Interface and Timing controls the processor
functions associated with processor memory access. During DMA access
these processor functions are disabled.

3.4.5.1 DMA Access. Unlike the processor, DMA devices do not use the
MAR or MDR, but the Memory Address Bus and Memory Data Bus are shared
by both functions. To prevent the MDR and MAR from affecting these
busses during a DMA transfer, the Memory Interface and Timing disables
Enable Memory Address Control (QEPMA inactive) and Enable Memory Data
Control (QEPMD inactive). These controls are disabled when XEPMAC1
(Disable Address and Data) is received from memory. DMA transfers are
totally independent of microprogram control.

3-10



3.4.5.2 Processor Access. Processor access to memory is controlled by
the microprogram. The Memory Control (MC) field (QRD20-22) of a CTL
microinstruction defines the type of read or write operation. When a micro-
instruction generates a memory request, the RAR and RDR must be held
until Memory Access is Granted (QMAG active). Also, since memory
access time is 400ns, in some cases the RAR and RDR will be held until the
memory operation is complete. The Memory Interface and Timing generates
XERDSTP which is sent to the Multiple Clock Cycle Control.

3.4.5.3 Memory Parity. Each location of memory is 17 bits (16 data
bits plus 1 parity bit). The Parity Bit (TMD16) is generated during DMA
or Processor write operations and is checked during Processor read
operations.

PARITY GENERATION

Whenever DMA or Processor write into memory a Parity Bit (TMD16) is
generated by the Processor. The Parity Checker/Generator is part of the
MDR function. The Parity of TMDO00-15 is checked and Even Parity (XEVNPTY)
is set if the parity of the 16 bits is even. The Memory Interface and
Timing uses XEVNPTY to generate TMD16.

PARITY CHECKING

Whenever the processor reads from memory it checks parity. The
Memory Interface and Timing places TMD16 on XPTY16 which is sent to the
MDR function. XPTY16 along with TMD00-15 is checked at the MDR. If
the parity is even (parity error) XEVNPTY is active. The Memory Interface
and Timing uses XEVNPTY to set QEVNPTY which is sent to the Alarm
Register. Since a read operation is being performed and even parity has
been detected, the appropriate bit in the Alarm Register will be set.

3.5 I/0 Mux Bus Interface. The 1/0O Interface consists of the Input
Flag Control, Output Flag Control, I/0 Mux Bus and Flag Timing Control
and Transceivers (XCVRS). The I/0 interface is controlled by IO micro-
instructions. All IO microinstructions contain an Input Flag field (QRD27-31),
Output Flag field (QRD22-26) and a field to select an internal or external
register. The Output Flag field selects TCMD, TSR, TDR, TDA, TADRS or
TACK. The Input Flag field always selects TSYN.

There are two typ2s of I0 microinstructions, Input and Output. Input
microinstructions cause a register to be loaded with information from an

I/O device. Output microinstructions cause the contents of a register to be
sent to an I/0 device.

3-11



OUTPUT MICROINSTRUCTION OPERATIONS

1)

2)

3)

Send a device address from a register to an 1/0 device on the
8 LSBs of the 1/0 Data Bus (set TADRS and wait for TSYN)

Send a device command from a register to an I/0 device on the
8 LSBs of the 1/0 Data Bus (set TCMD and wait for TSYN)

Send _data from a register to an 1/0 device on the I/O Data Bus
(set TDA and wait for TSYN)

INPUT MICROINSTRUCTION OPERATIONS

1)

2)

3)

Receive status byte on the 8 LSBs of the 1/0 Data Bus and load it
into a register (set TSR and wait for TSYN)

Receive data on the I/0 Data Bus and load it into a register (set
TDR and wait for TSYN)

Receive interrupting device's address on the 8 LSBs of the I/0O
Data Bus and load it into a register (set TACK and wait for TSYN)

For further information on the I1/O Mux Bus, see Chapter 7.

3-12



4.0 MICROINSTRUCTION FORMATS

4.1 Introduction. The HMP-1116 is a microprogrammed minicomputer.
The microprogram controls the microprogram address, arithmetic functions,
memory operations, input/output operations, byte and hex digit modifications
and software instruction decode.

The microprogram consists of 36-bit microinstructions which reside in the
Microprogram Roms. Microinstructions conform to one of the five formats
shown in Figure 4-1. The format of the microinstruction is determined by
the op-code. Each of the fields within a microinstruction is defined in
Tables 4-1 thru 4-17.

4.2 Microinstruction Formats Description

RR FORMAT

An RR microinstruction performs an arithmetic or logical operation on
two registers, and places the result in the destination register. The
registers are specified by the X and Y fields. The DE field determines
whether the destination is internal or external. The SE field determines
whether the source is internal or external. DE and SE together determine
whether X or Y is the destination register.

The operation performed by an RR microinstruction is determined by the
OP (controls carry in), AIC and AOC fields. The operation is performed by
the ALU function. The DIS and SPL fields determine how the 16-bit ALUs
on the ARB and ARC cards are used. One or both of the ALUs can be used.
If the external data input to the ARB ALU is being used, the MOD field
controls how the Byte Manipulator modifies the 16-bit operand on the B-bus.

The CSV and FLG fields control how the flags in the FLR will be set as a
result of the operation. The CSV controls the setting of the C-flag, and
the FLG controls the setting of the V-, G- and L-flags.

The SPM field can control either the setting of the memory bank address
or special functions on the COR card.

RI FORMAT

An RI microinstruction performs an arithmetic or logical operation with
a register and the 8-bit DATA field. The DE field determines if the
destination register is internal or external.

The OP, AIC, AOC, DIS, MOD, SPM, SPL and FLG fields have the same
functions as defined in the RR format. The C-flag remains unchanged as a
result of an RI microinstruction.

4-1



CTL FORMAT

A CTL microinstruction performs an arithmetic or logical operation on
two registers. The X, Y, DE, SE, OP, AIC, AOC, SPM and SPL fields
have the same functions as defined in the RR format.

The RPT field when set enables the next microinstruction to be repeated
until the Repeat Counter is decremented to zero.

The DC field controls the Instruction Decode Rom.
The MC field generates requests to Memory.

The STATUS field controls loading the Condition Code, and clearing the
Alarm Register or FLR. It also can be used for enabling or disabling the
QNPT interrupt function.

The LFG field when set causes the FLR to be loaded from the MSD of the
A-bus.

10 FORMAT

The X and DE fields define the source for an output operation, or the
destination for an input operation.

The OP, AIC and AOC fields control passing data through the ALU
function unchanged. The MOD field can be used to modify incoming or
outgoing data.

The BC field is not used.

The OF field selects which output flag is generated, defining what
specific type of 1/0 operation is being performed.

The IF field is always '01' which enables either a Sync from a device or
a False Sync Timeout to terminate the IO microinstruction.

The SPM and SPL fields are normally all zeroes for an I0 microinstruction.

BR FORMAT

The BLK microinstruction will unconditionally branch to the address
specified by the A field. The AIC and AOC fields allow the return address
to pass unchanged to an internal register specified by the X field. The
MSK field is not applicable to the BLK microinstruction.

The BCT and BCF microinstructions conditionally branch to the address
specified by the A field. A BCT will branch if the condition specified by
the MSK field is met. A BCF will branch if the condition specified by the
MSK field is not met, The AIC, AOC and X fields are not applicable to BCT
and BCF microinstructions,

™o



The BIF microinstruction will branch if the condition specified by the
MSK field is not met. If the branch is to be taken, the AIC and AOC fields
will cause the A field to be added to the internal register specified by the
X field. This indexed branch address is then loaded into the RAR.

The SPM and SPL fields are normally all zeroes for BR microinstructions.

4.3 Analyzing Microinstructions

EXAMPLE #1 (RR)

1000 | 00111 [ 011 |0010| 1 | 000 0 [000 {000 |1010({ 1 | 00 | 0O
OP AIC | AOC X | DE|MOD | DIS | FLG|CSV j SE | SPM | SPL

(In Hex: 83B280150)

When this microinstruction is in the Rom Data Register, the op-code of
'8' defines the format to be RR. The fields within the microinstruction are
decoded as follows:

AIC(ALU Input Code) = '0T7' This field selects the D input of the
W AM2901. Note that Carry in = 0
Sesi Tdble 42 (Table 4-1.), so the operation is not
D+1
AOC(ALU Output Control) = '3' Load RAM with ALU Output, Place ALU
See Table 4-3 Output on A-bus. (If Dest. is internal,

then the ALU is clocked. If Dest. is
external, then data on A-bus is used)

DE(Dest. External) = 1 See DE = 1, indicates destination is external
Table
SE(Source External) = 1 4-4 SE = 1, indicates source is external
ALU Clock Disabled
X ="' See MDR is the Destination
Table
Y ='A' 4-10 The source is a Register in File 1,
specified by the R1 field of a software
instruction
MOD ='0' See Table 4-11 Direct input (D) to Am2901 is not
Modified
DIS = 0 See Table 4-8 Destination Register is loaded
FLG ='0' See Table 4-6 No change to V-, G- or L-flags in FLR
CSV ='0" See Table 4-7 No change to C-flag in FLR

4-3



SPM = '0' See Table 4-9 No effect

SPL ='0' See Table 4-8 ARB ALU is enabled (If Dest. is internal,
then ARB ALU clocks are enabled. If
Dest. is external, then ARB ALU
output data is placed on the A-bus.)

To determine the overall function of this microinstruction see Table 4-4.
From the column titled "Implied Function and Source Restrictions" note
the entry E(X)<—© E(Y) which is applicable in this case. The notation " @ "
indicates a function may be performed. This function is dictated by the AIC.
The entry is read "External register specified by the X field is loaded with
a function of external register specified by the Y field".

In this example the contents of the Memory Data Register is loaded from
a General Register in File 1. The specific register is specified by the R1
field of a software instruction. (MDR)<—(GENERAL REGISTER).

The figure shown below indicates data flow as a result of executing
this microinstruction.

&
~
s
MEMORY GENERAL =
DATA REGISTER BYTE
REGISTER FILE 1 MANIPULATOR
4.81T ADDRESS
Pl R
r° l 1] R2 AM2901
INSTRUCTION REGISTER o
A-BUS }

4-4



EXAMPLE #2 (RI)

0110 | 00111 { 011 |0l01| O | 001 0 |000 |1000 0000, 00 | 00
OP | AIC |AOC | X DE| MOD | DIS | FLG DATA |SPM|SPL

(In Hex: 63B510800)

The op-code of '6' in this microinstruction defines the format as RI.
The fields are decoded as follows:

AIC ='07" See Table 4-2 Selects D input of AM2901 as operand.
AOC ='3" See Table 4-3 Load RAM with ALU Output.

DE =0 See Table 4-4 Destination is internal to AM2901.

X ="' See Table 4-10 Scratch register '5' is destination.
MOD ="'l' See Table 4-11 . Exchange Bytes on direct input to
- AM2901.

DIS =0 See Table 4-8 Destination register is loaded.

FLG ="'0' See Table 4-6 No change to V-, G- or L-flags in FLR.
DATA = '80' Immediate data field.

SPM ="'0' See Table 4-9 No effect

SPL ="'0' See Table 4-8 ARB ALU is enabled

Referring to Figure 4-4 we see that the function performed is
I(X;<—1(X) @ Im. This is read "Internal register specified by the X field
is loaded with a function of the internal register specified by the X field and
immediate data (DATA)."

The immediate field is '80'. A 16-bit word is applied to the input of the
Byte Manipulator (see figure below). The '80' is the two LSDs and the two
MSDs are forced to zero. Therefore, the input to the Byte Manipulator is
'0080'. The MOD field dictates a byte exchange which results in '8000' being
applied to the direct input of the AM2901.

The final result of executing this microinstruction is to load 8000 into
internal register '5'.

. ’ >
ROM ADDRESS 0080 BYTE 3
B-BUS MUX 8-8US MANIPULATOR e
~
‘00’ —j t ‘ ‘8000°
638510 80 0 o]

AM2901

ROM DATA REGISTER




EXAMPLE #3 (CTL)

1100 | 00011 | 011 {0001 | 1 0 11 | 001 001 0 {1010| 0 (00 |00
OP | AIC |AOC | X DE|RPT | DC|MC|STATUS |LFG| Y | SE|SPM|SPL

(In Hex: C1B1B2540)

The op-code 'C' defines the microinstruction as CTL format with a carry
in of zero. The fields are decoded as follows:

AIC ='03' See Table 4-2 Selects B as the operand. This means
an internal register specified by the B
address on the AM2901

AOC ="'3' See Table 4-3 Place ALU Output on the A-bus
DE =1 DE = 1 indicates that the destination is
See Table 4-4 external
SE=0 SE = 0 indicates that the source is
internal

Notice from Table 4-4 that the Y field
specifies the destination and X
specifies the source*

X =" *Source is internal register 1, which is a
See Table 4-10 data buffer
Y ="'A' *Destination is General Register File 1,
the specific register in File 1 is defined
by the R1 field of a software instruction
RPT =0 No repeat operation is to be performed
DC ='3 See Table 4-13 Decode control is instruction fetch
MC ="'1' See Table 4-14 Read first half of software instruction
STATUS ='1' The FLR is loaded into the Condition
See Table 4-12 Code of PSW, and zeroes are loaded
LFG =0 into the FLR
SPM ="'0' See Table 4-9 No effect
SPL ="'0' See Table 4-8 ARB ALU is enabled

*Normally the X field specifies the destination in RR and CTL microinstructions.
The only exception is when DE = 1 and SE = 0, in that case the Y field
specifies the destination.

4-6



This CTL microinstruction actually specifies four separate operations.
The AIC, AOC, X, Y, DE and SE fields specify an operation to be performed
with two registers. The DC field specifies that a start address from the
Instruction Decode Rom is to be loaded into the RAR. The MC field specifies
that a halfword is to be read from memory. The STATUS field specifies that
the FLR is to be loaded into the Condition Code and that the FLR is to be
zeroed.

It takes 200ns to execute the microinstruction, it takes 400ns to access
memory. The RAR is clocked halfway through the 200ns clock cycle, the
destination register, FLR and PSR are clocked at the end of the 200ns clock
cycle and the memory access is completed after an additional 200ns (during
the next microinstruction). The next microinstruction has nothing to do
with the loading of the MDR and IR, that is controlled by the hardware, The
sequence of operations are as follows.,

First, halfway through the 200ns clock cycle the RAR is loaded. If an
interrupt is pending, the new RAR will point to the interrupt service
routine. If no interrupt is pending, the RAR will point to a routine to begin
decoding and executing the software instruction in the Instruction Register.

o
~
INSTRUCTION ROM ADDRESS =
DECODE ROM REGISTER :
x
: A-BUS
1 )

Second, at the end of the 200ns clock cycle, internal register 'l' is
loaded into General Register File 1. From Table 4-4, the entry E(Y) - @ 1(X)
defines the implied function. Also, the Condition Code is loaded from the
FLR and '0' is loaded into the FLR.

PROGRAM STATUS REGISTER >
GENERAL 2
] REGISTER AM2901 [ | cc | e
FILE 1 g
fop ] R1 l Rz]
) A-BUS J
INSTRUCTION FLR

REGISTER

‘0

Finally, after another 200ns the MDR and IR are loaded from memory.

MEMORY DATA BUS

| 1

MEMORY DATA INSTRUCTION
REGISTER REGISTER




EXAMPLE #4 (10)

0101] 00011| 011 | 1000{0 | 000 | 00 | 00001 | 00001 00 |00
OP | AIC |AOC| X |DE|MOD|BC| OF IF | SPM | SPL

(In Hex: 51B800210)

The op-code of '5' in this microinstruction defines the format as 10.
An op-code of '5' is an output operation, the fields are defined as follows:

AIC ='03 See Table 4-2 Selects internal register designated as B
AOC ="'3' See Table 4-3 Place ALU Output on A-bus

DE =0 See Table 4-4 Source internal

X ="'8 See Table 4-10 Internal register '8' is source

MOD = '0' See Table 4-11 No effect

BC ='0' Not used

IF ='01' Enable Sync to terminate microinstruction
OF = '01' See Table 4-15 Set Address flag

SPM ="'0' See Table 4-9 No effect

SPL ='0' See Table 4-8 ARB ALU is enabled

In Table 4-4 there are two statements for this IO microinstruction,
I(X)=—1/0 and 1/0=—1I(X). I(X)=—1/0 is for an input microinstruction.
1/0 =—I(X) is for an output microinstruction. The second statement applies
in this example since this is an output microinstruction. The term 1/0 means
data on the I/0 Mux Bus data lines.

In an 10 microinstruction the data on the data bus is identified by the
output flag set. In this case the OF field causes the Address flag to be set,
indicating that the data on the 8 LSBs of the 1/0 data bus is a device address.

The final result of executing this microinstruction is to send the contents
of scratch register '8' out on the I1/0 Mux Bus, set the Address flag and wait
for the Sync flag. This is shown in the diagram below:

INPUT FLAG
CONTROL

1/O DATA
TSYN BUS

12-vize9l

AM2901 1/0 DATA

170 MUX BUS TRANSCEIVERS

OUTPUT FLAG
COMNTROL

1 A-BUS

4-8



EXAMPLE #5 (BR)

0001 { 01011 | 011 | 0000 [ 0010 | 0111 1111 1110{00 |00
OoP AIC | AOC | X MSK A SPM|SPL | (In Hex: 15B027FEQ)

The op-code of 'l' in this microinstruction defines the format as BR.
An op-code of '1' is a BCT(Branch on Condition True) microinstruction. The
fields are decoded as follows:

AIC = '0B' No effect

AOC ="'3' No effect

X =" No effect

MSK = "'2' See Table 4-16 True branch condition is when G-flag

= is set

A ='"TFE' If branch condition is met, branch to
'"TFE'

SPM ='0' No effect

SPL ='0' No effect

In Table 4-4 a BCT operation is described as RAR<-—A. This operation
will only take place if the branch condition is satisfied. In this example,
the RAR will be loaded only if the G-flag is set. If the G-flag is not set,
the RAR will be incremented to point at the next consecutive microinstruction.

If the G-flag is set, the RAR is loaded as shown below:

ROM DATA
REGISTER

ceviLol

A-FIELD

ROM ADDRESS
REGISTER

4-9



264

RR

Rl

CTL

10

BR

2 3 ) 9 101112 13 14 151617 18 19 20 271 22 23 24 25 26 27 28 29 30 31 32 33 34 35
D
OP AlC AOC X DE| MOD \ FLG CSv Y SE SP
S
123 6 9 10 111213 14 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35
D
op AIC AOC X DE| MOD | FLG DATA SP
S
RPT %
12 3 13 9 101112 13 141515 | 18 19 20 21 2223 24 25 G 27 28 29 30 31 32 33 34 35
i
opP AlC AOC X DE DC MC STATUS Y SE sp
123 6 9 10 1112 12°14 1516 1718 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 3%
oP AIC AOC X DE| ™MOD BC OF IF SP J
123 6 g 10 1112 13 14 151617 18 19 20 21 22 23 24 25 20 27 28 28 30 31 32 33 34 35
oP AlC AOC X MSK A




QRD 0 k] 7 1) 1% 19 23 27 3s
T T T T T T T e O A O O O O R O O A e e e |
-5 /-3 vy y51Y-11 D< y-6 V- ¥ - 4 - q-
RR o’o‘ ‘/.,r:'c kI'.Tgc x ?; L,[?.O:? L FLG csv v sem | sPL
R1 oe AlC AOC x g MOD 1 FLG DATA SPM SPL
cTL op aic aoc x 2151 oc mc |status|F v 2| sem | see
T G
10 op AIC AoC x g MOD ac oF IF som | sPL
BR oP Aalc AQC x :‘CSOKNO) A SPM sSPL
Figure 4.1. Microinstruction Formats
Table 4-1. OP-Code Formats
RD INPUT
OP FORMAT DESCRIPTION CARRY
0000 Branch and link
0001 BR Branch on condition true 0
0010 Branch on condition false
0011 Branch indexed on false
0100 Input
0101 19 Output 0
1
0110 . . 0 ?
0111 RI Immediate-to-register 1 ‘
1000 0 1
1001 ; ; 1 ,
1010 RR Register-to-register csv i
1011 -CSV :
1100 ; . 0
1101 CTL Register-to-register control 1 |
1110 DIV Divide step -CSV
1111 MUL Multiply step -CSV

CSV = C-flag in FLR

€C-v1L91




MICROINSTRUCTION FIELD CROSS REFERENCE INDEX

FUNCTIONAL SCHEMATIC

FIELD TABLE PAGE NUMBER
AIC 4-2 16
AOC 4-3 15
X or Y (Internal) 4-10 15, 16
X or Y (External) 4-10 8, 9, 10
DE and SE 4-4 8, 9, 10
MOD (Binary Position) 4-5 15
MOD (Byte Manipulator) 4-11 14
DIS 4-8 8
FLG 4-6 18
Ccsv 4-7 17
SPM 4-9 20, 32
SPL 4-8 13, 16, 17
DATA --- 5
RPT === 13
DC 4-13 4
MC 4-14 30, 34
STATUS, LFG 4-12 17, 18, 24, 25
OF 4-15 22
IF = 21
MSK 4-16 3
A i 5

4

!

11



Table 4-2. AIC Field Definition

AIC | FUNCTION if C=0 | FUNCTION if C=1

00000 A+Q A+Q+1

00001 A+B A+B+1 Key to Symbols:
00010 | @ Q+1 + Addition
00011 B B +1 - Sub.traction
00100 [ A b e
00101 D +B D+B +1 (® Exclusive Or
00110 D+Q D+Q+1

00111 D D+1 X=One's Complement of X
D itk -8 -X=Two's Complement of X
01010 Q-1 Q

01011 B-1 B

01100 A-1 A

01101 B-D-1 B-D

01111 D -D

10001 A-B-1 A-B

10010 Q - Q

10011 B -B

10100 A - A

10101 D-B-1 D-B

10110 D-Q-1 D-Q

10111 D-1 D

11000 ANAB |  AAB

11001 AVB | AVB

11010 A®B A®B

11100 DAB DL AB

11101 DVB DVB

11110 . D (® B D(®B




Table 4-3.

AOC Field Definition

AOC Load Control* Shift Control Output Data Control
000 Load Q No shift ALU output

001 (Not used) (Not used) (Not used)

010 Load RAM No shift RAM location A

011 Load RAM No shift ALU output

100 Load RAM and Q Right shift ALU output

101 Load RAM Right shift ALU output

110 Load RAM and Q Left shift ALU output

111 Load RAM Left shift ALU output

*[oad will occur only if ALU is clocked.

The ALU will be clocked when the destination register is specified

as internal.



Table 4-4. AIC and AOC Terminology Definition

Source ALU
Control | Address Implied Function and ALU Input Control
Format | DE| SE Al B Source Restrictions AOC Restrictions
RR 0|0 |Y |X | IX)>IX)® 1Y) -
or . Ko or I(X)=— (@ 1(Y)
%1k 0 |1 |* 1(X)=I(X) ® E(Y)
or I(X)=—®) E(Y)
1o E(Y)=-—E®Y) ® 1(X)
or E(Y)=-— @ I(X)
1 |1 * E(X)=—@® E(Y) Unary operations only
RI 0 |- |* |X | IX)==IX)® Im sns
1 ¥ | E(X)=— @ Im Unary operations only
BLK = | = * 1 X I(X)= 'RAR'; -
'RAR'—-- A
BIF = = * | X 'RAR'= I(X)+A
10 0 |- * | X I(X)=1/0; I/0=-I(X) | Unary operations only
1 * E(X)=-1/0; 1/0=-E(X)
BCT and| - |- x| RAR=-A ---
BCF
I1(X) = Register internal to ALU;E(X) = Register external to ALU;
- = Not specified;
* = ALU Address not applicable to operation;
Im = B-bus input modified by MOD-field, if any;

Unary operations = Invert, twos complement, transfer, increment, or
decrement




Table 4-5. Binary Positioning Control

ALU Q
MSB LSB
MOD | QRD-10 | Input | Input Function
00X 0 0 - Right logical shift; set ALU MSB to zero
(C) (when OP = 14 or 15, set ALU MSB to
carry out)
1 -— 0 Left logical shift; set Q LSB to zero
01X 0 Sign s Multiply; set ALU MSB to true sign
Bit (Sign (® Overflow)
1 s ALU Divide; set Q LSB to quotient bit
MSB (ALU carry)
Carry
10X 0 C e Right algebraic shift; set ALU MSB to
CSv
——= C Left algebraic shift, set Q LSB to CSV
11X 0 Q LSB| --- Right rotate; set ALU MSB to Q LSB
- - ALU Left rotate; set Q LSB to ALU MSB
MSB
Table 4-6. FLG Field Definition
FLG| Status Saved in V Flag of FLR | Status Saved in G and L Flags of FLR
000 | No Change No Change
001 | No Change Single precision algebraic result
010 | No Change Multiprecision algebraic result
011 | Algebraic overflow Multiprecision algebraic result
100 | Algebraic overflow Single precision algebraic result
101 | *V Flag or carry save exclu- Single precision algebraic result
sive ORed with left-shifted
out bit of ALU
110 | Algebraic overflow No Change
111 | *V Flag or carry save exclu- | No Change

sive ORed with left-shifted
out bit of ALU MSB

*Only for MOD code of algebraic shift or rotate, otherwise set to zero.

4-15



Table 4-7. CSV Field Definition

CsVv Status Saved in C Flag of FLR

XX0 No change

001 Carry from ALU MSB

011 Borrow from ALU MSB

101 Left-shifted out bit from ALU MSB

111 Right-shifted out bit from Q LSB

Table 4-8. ARB and ARC Enable Control

DIS SPL FUNCTION
0 00 Single Precision, Disable ARC Dest. Clock
0 01 Transfer from ARC to ARB, Disable ARC Dest. Clock
0 11 Double Precision
1* 01 Double Precision, Disable ARB and ARC Dest. Clocks
1* 10 Transfer from ARB to ARC, Disable ARB Dest. Clock.
1% 11 Single Precision, Disable ARB Dest. Clock

*Also Disables Dest. Clocks to External Registers

Table 4-9. SPM Field Definition

SPM | XMARD=1,LOAD QMARA-B WITH | XMARD=0,COR CARD OPERATION
00 QMARA-B* No Operation
01 Zeroes Increment Iteration Counter
10 PSW10-11 Load Shift Counter, Shift
Algebraic
11 PSW08-09 Load Shift Counter, Shift
Logical

*If Input Microinstruction, Load With TDMA-B.
**XMARD=1 when the MAR is the Destination.

*%

4-16



Table 4-10. Register Definitions

XorY INTERNAL (ARB) EXTERNAL
0000 Abort Return Address Not Used
(Not Used)
0001 TEMPYD Repeat Counter (CTR)
0010 Constant '00FF' Memory Data Reg. (MDR)
0011 Constant '0004' Instruction Reg. (IR)
0100 Constant '0002' Memory Address Reg. (MAR)
0101 Constant '8000' Program Status Reg. (PSW)
0110 Temporary Save for LOC EXT Reg.*
0111 Location Counter (LOC) Cordic Fixed Memory (Source),
Iteration Counter (Dest.)
1000 Scratch Reg. Reg. File 1, R2+1 (YSPl)
1001 Scratch Reg. Reg. File 1, R2 (¥S)
1010 Scratch Reg. Reg. File 1, R1 (YD)
1011 Scratch Reg. Reg. File 1, R1+1 (YDPl)
1100 Scratch Reg. Reg. C (Source),
Reg. A (Dest.)
1101 Scratch Reg. Reg. D (Source),
Reg. B (Dest.)
1110 Scratch Reg. Flag Register (FLR)
1111 Scratch Reg. Rom Address Reg. (RAR)

*EXT Reg. is Defined in Table 4-17.

4-17



Table 4-11. MOD Field Definition (Byte Manipulator Control)
D0 D1 D2 D3 B-bus input

MOD QMAR15 Resulting Word Function
000 X D0 D1 D2 D3 Parallel load
001 X D2 D3 D0 D1 Byte exchange

0 D2 D3 P P
010 Byte insert

1 B P D2 D3

0 0 0 D0 D1
011 Byte extract

1 0 0 D2 D3
100 X 0 0 0 D0 Hex digit 0 extract
101 X 0 0 0 D1 Hex digit 1 extract
110 X 0 0 0 D2 Hex digit 2 extract
111 X 0 0 0 D3 Hex digit 3 extract

X = Don't care;

P = Previous contents; 0 = Zero

Table 4-12. Status Field Definition
STATUS LFG FUNCTION
000 0 No Operation
000 1 Load FLR from A-bus MSD
001 0 FLR- CC, Zero FIR
011 0 No Change to FLR, FLR —-CC
100 0 Alarm Reg -»CC, Zero Alarm Reg
101 0 Zero FLR
110 0 Reset Interrupt Enable
110 1 Load FLR from A-bus MSD, Reset
Interrupt Enable
111 0 Set Interrupt Enable

4-18



Table 4-13. DC Field Definition

@, s DC FUNCTION
x © < 00 No Operation
o 1 01 Primary Function Decode (PFDC) .@’:o—w Fetch)
x 1 0 10 Secondary Function Decode (SFDC)
X 1] 11 Instruction Fetch (IFCH)
(Interrupt Check)
Table 4-14. MC Field Definition

MC FUNCTION

001 Read First Half of Instruction

010 Read Second Half of Instruction

011 Read Operand

100 Not Used (Read)

101 Write

110 Write Priveleged

111 Not Used (Write)

000 No Operation

Table 4-15. OF Field Definitions

OF 1/0 Operation
00001 Address

00010 Command

00011 Data Available

00100 Data Request

00101 Acknowledge Interrupt
00111 Status Request

4-19



Table 4-16. MSK Field Definition

MSK TRUE BRANCH CONDITION FALSE BRANCH CONDITION
0000 Special Branch Cond. Unconditional
(Repeat Counter Status)
0001 L -L
0010 G =3
0011 GorL -G and -L
0100 A -V
0101 VorlL -V and -L
0110 Vor G -V and -G
0111 Vor Gor L -V and -G and -L
1000 C -C
1001 Corl -C and -L
1010 Cor G -C and -G
1011 CorGorlL -C and -G and -L
1100 CorV -C and -V
1101 CorVorl -C and -V and -L
1110 CorVorG -C and -V and -G
1111 CorVor GorL -C and -V and -G and -L

C = Carry Flag; V = Overflow Flag; G = Greater than Zero Flag;
L = Less than Zero Flag



Table 4-17.

EXT Register

Bit Source Definition Dest. Definition

00 Execute Pushbutton(XCATN) Not used

01 Single Mode(XSNGL) Not used

02 Machine Malfunction(XMALF) Not used

03 Power Failure(XPPF) Not used

04 Remote Program Load(XFST) Not used

05 1/0 Inerrupt(TATN) Bank Address Force Enable
(XBAO05)*

06 Not used Bank Address MSB Force
Bit(XBAO06)

07 Not used Bank Address LSB Force -
Bit(XBAO0T)

08 Panel Lock(SLOCK) Not used

09 Memory Test Pushbutton(SMTST) Not used

10 Program Load Pushbutton(SPRLD) | Not used

11 Memory Operational(QMOP) Not used

12 Bank Address MSB(QMARA) Reset Remote Program Load
(XBA12)

13 Bank Address LSB(QMARB) Set Memory Operational
Indicator(XBA13)

14 Not used Set Wait Indicator(XBA14)

15 Halfword Flag(THW) Reset Wait Indicator(XBA15)

*The SPM field must be set to zero to enable XBA06-07 to be forced into
the Memory Bank Address.

4-21



EXTERNAL REGISTER LOCATION IN FUNCTIONAL SCHEMATICS

REGISTER

FUNCTIONAL SCHEMATIC PAGE NUMBER

Repeat Counter
Memory Data Reg.
Instruction Reg.
Memory Address Reg.
Program Status Reg.
EXT Reg. (Source)
EXT Reg. (Destination)

Cordic Fixed Memory
Iteration Counter

Reg. File 1

Reg. C
Reg. A

Reg. D
Reg. B

Flag Register

Rom Address Reg.

13
11
11
12
12
24
32, 33

20

12

20

20

17, 18, 19

2

o
o



5.0 READING THE MICROPROGRAM LISTING

5.1 Introduction. The HMP-1116 processor is based on a standard
processor design which has many applications. The features which determine
how this general purpose processor will be used are its microprogram and its
hardware options. The external register definitions and 1/0 flag definitions
are examples of hardware options.

A standard format is used for writing the microprogram. First, the
microprogrammer gives names to operands (registers and immediate values)
and defines the fields of the microinstruction which control hardware
options. Second, the microprogrammer writes the microprogram in assembly
language. One statement in assembly language will represent the operation
to be performed by one microinstruction. The formats of the assembly
statements are given in Appendix B of the Tech. Manual.

A computer is fed the definitions and assembly statements and it
converts the assembly statements into 36-bit microinstructions. The computer
then prints out the Microprogam Listing.

The Microprogram Listing provides a complete description of the micro-
program of the HMP-1116. The Listing is divided into three major sections:

1) Definitions-Define hardware options unique to this microprogram.

2) Microprogram-The assembly statements and their associated 36-bit
microinstructions.

3) Cross Reference Index-A list of all defined operands and micro-
program branch addresses, where in the Listing they are
defined and every assembly statement which references them.

5.2 Reading Assembly Statements. In the Microprogram Listing there is
an assembly statement and a 36-bit code (in hexadecimal) for every micro-
instruction in the HMP-1116. There are two ways of determining the
operation performed by a microinstruction. In Chapter 4 we learned the
first method; write out the 36 bits of the microinstruction in binary and
break them into fields. The second method is to read the assembly statement
in the Listing. Reading an assembly statement is much faster and easier
than decoding 36 ones and zeros. The objective of Chapter 5 is to demonstrate
how to read the assembly statements in the Microprogram Listing.




A typical portion of the Microprogram Listing is shown below.

. 10C  OBJECT COOE . ..

000131 C2300A000
000132 9237000CC

Each line of this part of the Listing is divided into four columns,
1) LOC, 2) OBJECT CODE, 3) STMT and 4) SOURCE STATEMENT. Each
line with an entry in the columns labeled LOC and OBJECT CODE represents
one microinstruction. Lines with no entries in LOC and OBJECT CODE are
spacing or comments. The purpose of the spacing and comments is to make
the Listing easier to read.

The column labeled LOC contains the hexadecimal address of the micro-
instruction.

The column labeled OBJECT CODE contains the 36-bit microinstruction in
hexadecimal (9 hex characters).

The column labeled STMT contains statement numbers. A statement
number is assigned to every line in the Listing. The Cross Reference
Index refers to lines in the Listing by using these numbers.

The SOURCE STATEMENT on a line which has a LOC and an OBJECT
CODE is an assembly statement. The assembly statement was written by the
microprogrammer to represent the operation to be performed by a micro-
instruction. A computer converted the assembly statement into a 36-bit
microinstruction (the OBJECT CODE) and assigned it a location in Micro-
program Memory (the LOC).

Appendix B provides a description of the assembly statements. Three
steps are required to read an assembly statement:

1) Find the format of the assembly statement in Table B-1.
2) Find the function of the assembly statement in Table B-2.



3) Look up the definitions of the operands and modifiers which
describe the details of the operation to be performed. Some of
the definitions are found in Table B-3. Any operand or
modifier not defined exactly in Table B-3 will be defined in the
Definitions in the Microprogram Listing.

EXAMPLE #1

000130 838280150 3548 STH LR . HOR,YD

This assembly statement has been assigned the branch label STH. Branch

labels are optional and are only assigned to assembly statements to which
other assembly statements will branch.

By inspecting the MSD of the OBJECT CODE we can immediately tell that
this is an RR microinstruction (microinstruction op-code '8'). Knowing the
microinstruction format in advance will usually aid in reading the assembly
statement.

The assembly statement op-code is LR. The format of this assembly
statement is found on page B-2, it is the first format in Table B-1. Its
format is:

LR regd,regs,flr,MOD=mod,DEST=INHIB

In our example regd is MDR and regs is YD, and all the other options of this
microinstruction are not specified which means they are not implemented.
The underlined portion of the statement is the only part of the statement
that can be left unspecified (defaulted). The regd is the destination
register and regs is the source register. MDR and YD are names the
microprogrammer assigned to two of the registers in the HMP-1116.

The function performed by the assembly statement is found on page B-4,
it is the first entry in Table B-2. It reads:

LR Load Register regd-—MOD(regs)

This tells us that this microinstruction will load the destination register with
data from the source register that is modified by the Byte Manipulator. The
MOD in the assembly statementis specifying Byte Manipulator control. The

meaning of MOD is defined in Table B-3 on page B-8. Since it is unspecified

in our assembly statement (default), data will pass through the Byte
Manipulator unchanged.

In Table B-3 regd and regs are defined only as register operands. The
specific definitions of registers in the HMP-1116 are found in the Definitions
in the Listing. Both of the registers in this assembly statement are found
in the list of external registers.



.............

The external register definitions are shown below:

2440 wemw EXTERNAL REGISTERS . . .. .. ... ..................... ....... 5

.................... BG4 M . ...
___________________ 2442 ... .... EXTRN CTR,MOR, IR, MAR,PSH,EXT,YSP1,YS,YD,YOP1,FLR,RAR

____________________ 2443 .. ....REGEQU (CTR,HOR)IR,MAR,PSH,EXT,YSP1,Y3,YD,YOP1,FLR,RAR )y

L M293,04,5,640,9000011,14,15)
00001 26444+3CTR | EQU 1
00002 2445+8MDR (1.} 2

....................................................................

00003  244648IR EQU .3

....................................................................

........... 00004  R4AZBHAR EQU & .. ... ... ..icceerennnreteiniosnsetroreoniseans
00005 . 2448+8PSH  EQU
00006  RAGVBEXT ., BRU . € ... . iiiiiiciinsivevisinuisnanineteemieseiaas

00008 2450¢8YSPY EQU 8 . ... ieiiiieiiieieriieeiiiiiiiaaas

...........

........... 00009  245148YS  EQU 9 L.ttt et e

........... QO00A . 2AS200YD. ... BQU ... D0 o ineiiinmaieneeiiosaniomossione sisesio e s e meinsnis oias

........... 00008 R4SIBYOPY . - BQU .. B .o soniiiyaimies oites Wi s #es o v watsle siv e esetve
0000 ~2454+3FLR . EQU .. 14

0000F = 2455¢8RAR EQU 15

............................................................

In statement number 2445 "MDR EQU 2" tells us that MDR is the name the

microprogrammer has assigned to external register '2'.

In statement number 2452 "YD EQU 10" tells us that YD is the name the

microprogrammer has assigned to external register 'A'.

In table 4-10 (in Chapter 4) the external registers are defined. Extcrnal

register '2' is the Memory Data Register, and external register 'A’ is the
General Register in File 1 specified by the R1 field of a software instruction.

This microinstruction will load the Memory Data Register with data from

the General Register in File 1 specified by the R1 field of a software
instruction.

In Chapter 4 on page 4-3 we analyzed the same microinstruction by

breaking it into binary fields. Compare the hex code of the microinstruction

on page 4-3 with the hex code of the microinstruction we just decoded

(OBJECT CODE). Also compare the operations described in the two examples.

EXAMPLE #2

000000 638510800 ... el LI X8030,X'80",HOD=SHAP

This assembly statement does not have a branch label. From the micro-

instruction op-code (MSD of OBJECT CODE) we can tell its format is RI.

The assembly statement op-code is LI, its format is found in Table B-1,

on page B-3:

LI regd,imm,flr,MOD=mod,DEST=INHIB

The function of the assembly statement is found in Table B-2 on page B-5:

LI Load Immediate regd-=— MOD(imm)



This assembly statement loads the destination register (regd) from an
immeidate data field defined by imm. The immediate data passes through
the Byte Manipulator and can be modified by MOD.
"7\ o Z
In this case, MOD=SWAP is defined on Page B~8 (Table B-3). Swap bytes
means that the bytes on the B-bus will be exchanged by the Byte Manipulator.

In an RI microinstruction the 8-bit data field is placed on the 2 LSDs
of the B-bus and the 2 MSDs of the B-bus are set to zeros.

The imm field defines the immediate data as hex '80'. On the B-bus that
becomes '0080'. After passing through the Byte Manipulator it becomes '8000'.
This 16-bit word is loaded into the destination register which the micro-
programmer refers to as X8000. The definition of this register is found in
the definitions of the internal registers. The definitions of the internal
registers are shown below:

............... 2364 IIIJNTERN.ALDEGISTERS....-...........................................
.............. 2365'
o 2367 . REGEQU ABORTAD,O0 . ' "' "' ABORT RETURN ADDRESS (NOT USED) |
. 2368+8ABORTAD EQU 0 S R 0 S e e e e e terma e e e s
_____ 8369 . REGEQU TEMPYD,1 . ... ' "’ "REGD OPERAND FOR HH{ INSTRUCTIONS
. @370+8TEHPYD  EQU 1 SSTAR sy osmmte i S S S SRS . S
1 5 12 DO~ REGEQU XOOFF,2 . . . . . ..  CONSTANT VALUE X'00FF* .
1 Ll LT S S I i
.. 2373 ..‘....GEGEGUX°°04-3...........-.,.FONSTAN'T.VALU-'-.4 ................
STTAVAROOON OO i3, oo stom non i s s o St e s A
2315 . REGEQU X0002,4 .  _ .. . ... " | CONSTANT vALLE 2~~~ "
. 8376+8X0002  EQU 4

377 . REGEQU X8000,5 . . . . . . ' CONSTANT VALUE X'8000°

. 237648X8000 EQU § . ki

...................................

s BRI - REGEQU LoCx,6 | [ [ 1111 TEHP FOR LOC
. 238048L0CX ., EQU ¢

..................
....................

381 REGEQU LOC,? . . . . .. "] LOCATION COUNTER . .~~~ "

2382+4310C s T L SN
............... g4 w . 18+9,A,B,C\D,E\F) ... RESERVED FOR LOCAL USE SRR
...... o..... 2385 . REGEQU (SRS,5R9,5RA,SRD,3RC,5RD,SRE,SRF), R e e
R ST PR PP LA D LIDE IR EIRE TR L TR E 3 R
-... 00008 p386e8SR8 EQU_ 8 T O
55 A 008 " BISTORMAY. ... B oot e ISR A

. 0000A  2388+85RA ... EQU 10

.....................................................

<0000 . BIORARRRE . B AL et e ERAEERER e
,,,,, 0000C 239048SRC . EQU 12

..... 00000 239143580 ' Equ 13

.. O000E 239248SRE QU 14

0000F  2393¢8SRF _  EQU 15

.......................................................

In statement number 2378 "X 8000 EQU 5" defines X8000 to be internal

register 5. A comment states that internal register 5 contains a "Constant
Value '8000'",

This microinstruction will load '8000' into internal register 5. This is
the microinstruction the microprogram uses to initialize internal register 5.

The same microinstruction was decoded in Example #2 in Chapter 4. Compare
the results of the two examples.



EXAMPLE #3

000135 C1B1B2540 3562 LR . YD,TEMPYD,ST=JHC,0CSIFCH,MCSMRIY .. . ......

From the MSD of the OBJECT CODE we can tell that this is a CTL micro-
instruction.

The assembly statement op-code is LR. Note that in Table B-1 there
are two op-codes LR, the first is for an LR, RR format and the second is
an LR, CTL format and it is:

LR regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt

The LR function is:
LR Load Register regde—regs
(the MOD function is not applicable to a CTL microinstruction)

The operation will be to load regd(YD) from regs(TEMPYD). YD we saw
in Example #1, it is the General Register in File 1 specified by the R1 field
of a software instruction. TEMPYD is found in the definitions of the internal
registers, TEMPYD is internal register 1. Therefore, this microinstruction
will load the General Register specified by R1 with data from internal
register 1.

ST=JMC is defined in Table B-3 on page B-9. This causes CVGL (the
FLR) to be loaded into the Condition Code (PSW(12:15)), and zeros are
loaded into CVGL.

DC=IFCH is not defined in Table B-3. It is defined in the Definitions
in the Listing and is shown below:

..........................................

............... BABY W oo ionanamat oo 8 s o 0 8 o0 0 S 3020500008
o001 | 2483 BFOC . EQU DY LDTTILLIITIIIITITTU T PRIMARY FUNCTION DECOOE
,,,,,,,, 00002 2484 8FOC . EQU.. 2 SECONDARY FUNCTION DECOOE |

y 00003 2485 IFCH  EQU

In statement number 2485 "IFCH EQU 3" tells us that the DC field of
this microinstruction will be set to '3'. Table 4-13 tells us that this is an

Instruction Fetch (Interrupt Check). The signifigance of this operation is
discussed in section 5-3.

The meaning of MC=MRI1 is also found in the Definitions in the Listing
and it is shown below:

,,,,,,,,, 2468 wun  MCs,,. DEFINITIONS

......... LT s SN SO B S
00003 IATY MREA .. B - Xt o ca cosia READ INSTN (LOAD HOR & IR) ,
00002 2472 MRIZ . EQU 2 . . .. .. ... .......... READ 2ND WORD OF INSTN (LOAD MOR
00003 2473 KRO . . BRU ., B ... vvummmmunnsansmannine READ OPERAND . ... .............
00004 2474 IROH L O mm———————
00005 2475 I . L I RS R T BRETE .o o conawaanmemuonins



In statement number 2471 "MRI1 EQU 1" tells us the MC field of this
microinstruction will be set to '1'. Table 4-14 tells us that this operation
is read the First Half (16 bits) of a software instruction. The comment by
the definition in the Listing tells us that the MDR and IR will be loaded
from memory.

This microinstruction actually specifies four operations. 1) Register
transfer, 2) Condition Code load, 3) Interrupt Check and 4) read from
memory.

The same microinstruction was decoded as Example #3 in Chapter 4.
Compare the results of the two examples.

EXAMPLE #4

00003C 518800210

This is an 10 microinstruction. The assembly statement op-code is OUT
its format is:

’

OUT reg,oflag,iflag,MOD=mod,BC=bc

and its function is:
OUT Output output bus-—reg

This microinstruction is sending the specified register (SR8) out on the
I/0 Mux Bus. SR8 is internal register 8.

The microprogrammer must also specify the output flag (oflag) and the
input flag (iflag) used in the 1/0 operation. The oflag is ADRS. The

definitions of the input and output flags are in the Listing. They are
shown below.

,,,,,,,,,,,,, ;2488 wes INPUT/OUTPUT FLAG DEFINITIONS
O g N RS S A R S A :
,,,,,, 00001 2491 ADRS .| " EQU 1

....... 00002 2492 CHO EQU g T 11Tttt
...... 00003 2493 NEWJ
...... 00004 2494 DR s B i SRR T e e
...... 00005 2495 ACKEQUS
...... 00006 2496 DACKWU‘
_______ 00007 2497 SR EQU 7

P GODOR ENREAVNG . . B, . Lo nncnnin, o SRR AR s
..... g . A BTN . B e T
_______ 00003 2500 FSYNC | EQU 3

...................................................

In statement number 2491 "ADRS EQU 1" tells us that the OF field of the
microinstruction will be set to '1'. From Table 4-15 we find that this
assembly statement specifies the Address flag. All IO microinstructions in

the HMP-1116 will specify SYNC as the input flag. The IF field will be set
to '1'.

5-7



This microinstruction will place internal register 8 on the 1/0 data bus,

and set the Address flag. The microprogram will continue only after the SYNC

flag is received.

The same microinstruction was decoded in Chapter 4, Example #4.
Compare the results of the two examples.

EXAMPLE #5

0000E3 15BO27FEQ 3293 BCT . 6,XXPRGLD

........................................

This microinstruction is a BR format. The assembly statement format is:

BCT cond,addr
and its function is:

BCT Branch on Condition True cond false: no operation
cond ture: RAR=—addr

This microinstruction will branch if the branch condition is true, that
is if at least one of the flags specified by cond is set. In this example

cond is G which means that the branch will be taken only if the G flag is set.

The code placed in the MSK field of the microinstruction will be a function
of cond, and it is defined in Table B-3.

The addr is a branch label assigned to an assembly statement somewhere
in the Listing. If this microinstruction branches, then it will branch to the
assembly statement labeled XXPRGLD. The easiest way to find the branch
address is to read it directly from the second, third and fourth LSDs of
the OBJECT CODE. It is 'TFE'.

If the G flag is set, this microinstruction will branch to '7FE'.

The same microinstruction was decoded in Example #5 in Chapter 4.
Compare the results of the two examples.

SUMMARY

As you grow more familiar with the Microprogram Listing you will find
that you can read most assembly statements without referring to Appendix B
or the Definitions. Once you develope this ability you will find the Micro-
program Listing provides a concise and complete description of all the inner
workings of the HMP-1116.

5-8



5.3 Software Execution Cycle. The microsequences required to execute
software instructions and service interrupts are linked together by start
addresses generated by the Instruction Decode Rom. The Instruction Decode
Rom is divided into three functions; 1) Interrupt Check(IFCH), 2) Primary
Function Decode(PFDC) and 3) Secondary Function Decode(SFDC). The
truth tables for these functions are on pages 5-11 and 5-12. The Software
Execution Cycle is begun by a CTL microinstruction with DC=IFCH.

rCcfy k_af orée A

, - f
If no interrupts are pending when an IFCH is generated,hthe Instruction
Decode Rom generates the address of the Common Instruction Fetch Routine.
This routine increments the Location Counter (PSW(16:31)) by two. The last
microinstruction in this routine is a CTL which has DC=PFDC.

When a CTL microinstruction has DC=PFDC either a PFDC or an SFDC
will occur. If the software instruction being decoded is a halfword instruction

an SFDC is generated. If the software instruction being decoded is a fullword
instruction a PFDC is generated.

Based on the software op-code the PFDC will generate one of ten micro-
sequence start addresses. These ten microsequences are used for setting up
the second operand of a fullword instruction. Each routine fetches the
second half of the software instruction from memory, performs the necessary
indexing and additional data fetching and adds two to the Location Counter.
The last microinstruction in a PFDC routine is a CTL which has DC=SFDC.

Based on the software op-code the SFDC generates the start address of
the microsequence which performs the operations unique to the software
instruction, The last microinstruction in the microsequence is a CTL that causes
the next software instruction to be read from memory and has DC=IFCH,



LAST p INSTRUCTION:

vZ-viL9

CTL DC=11=IFCH

EXECUTE
SOFTWARE INSTRUCTION

LAST g INSTRUCTION: SERVICE
SFDC INTERRUPT:
CTL DC=11=IFCH QNPT = *2F'

XINTRPT = *33'

CHECK FOR
BRKPT.
SBKPTEN = '2E’

READ 1ST
HALF OF
DATA/ADD.
SOFTWARE A
INSTRUCTION SWX=LOC

(IR & MDR)

LAST u INSTRUCTION:
CTL DC=01=PFDC

FULLWORD
INSTRUCTION
QIR01=1?

LAST p INSTRUCTION:
CTL DC=10=SFDC

PFDC

READ 2ND HALF
OF SOFTWARE
INSTRUCTION
(MDR)

Software Execution Flow

5-10



=1)

(QIROL

THESE ARE ALL FULLWORD SOFTWARE INSTRUCTION OP-CODES

IFCH DECODE ROM
QNPT | XINTRPT | SBKPTEN | OUTPUT

1 X X 02F ABORT INTERRUPT

0 1 X 033 NORMAL INTERRUPT

0 0 1 02E BREAKPOINT

0 0 0 02C COMMON INSTRUCTION FETCH
PFDC DECODE  ROM (& shee™v)
OP-CODES Type
40 RXAD
41-43 RI
44-4F RXHW
50 RXDP PFDC DE_CODE ROM OUTPUT
51-53 RXHW TYPE XNDXRZO OUTPUT
54 RI
55 RXDP RI 0 004 RINOX
56-57 RI 1 008 RIX
58 RXDP RXAD 0 00C RXADNOX
59 RXAD :> 1 010 RXADX
5A-5D RXDP RXOP 0 014 RXOPNOX
5E-5F RI 1 018 RXOPX
60 RXAD RXHW 0 01C RXHWNOX
61 RXOP 1 020 RXHWX
62-63 RI RXDP 0 024 RXD PNOX
64-6D RXOP 1 028 RXD PX
BE-6F RI
70 RXAD
71-73 RI
74-7D RXAD XNDXZRO = 0 WHEN
TE-TF RI X2-FIELD OF
C0-C1 RI SOFTWARE INSTRUCTION
C2 RXAD IS ZERO (NO INDEX)
C3-CF RI
D0-D1 RXAD
D2-D4 RXOP
D5 RXAD
D6-D7 RXOP
D8 RXHW
D9 RXAD
DA-DB RXOP
DC RXHW
DD-DF RXOP
E0-F0 RI
F1-F4 RXOP
F5-F7 RI
F8-FB RXAD
FC-FF RI

5-11



Addresses 057, 058, 059 are the locations for Illegal or Privileged Instruction

Interrupt routines.

Privileged Instruction Op-Codes are listed twice on the chart,

SFDC DECODE ROM i

oP- ouT-|| OP- ouT-||op- out-|[|oP- OUT-
CODES|QPSW07|PUT || CODES|QPSW07|PUT || CODESQPSWO07 PUT ||CODES|QPSW07|PUT
00 X 059 45 X 149 96 1 059 D7 1 058
01 X 1A9 || 46 X 158 97 0 282 D8 0 262
02 X 17E 47 X 15C 97 i 059 D8 1 058
03 X 190 48 X 12E 98 0 261 D9 0 255
04 X 152 49 X 14C 98 1 059 D9 1 058
05 X 137 4A X 13D 99 0 748 DA 0 247
06 X 156 4B X 145 99 1 059 DA 1 058
07 X 15A || aC X 1IF1 9A 0 244 DB 0 240
08 X 12C 4D X 208 9A 1 059 DB 1 058 |
09 X 14B 2E X 13C 9B 0 207 DC X 1FA
0A X 13A 4F X 144 9B 1 059 DD 0 238
0B X 142 50 X 409 9C X 1F9 DD 1 | 058
0C X 1F0 51 X 347 9D 0 236 DE 0 203
0D X 20A 52 X 34D 9D 1 059 DE 1 1 058
0E X 139 53 X 343 9E 0 200 DF 0 23A
OF X 141 54 X 057 9E 1 059 DF 1 058
10 X 349 55 X 412 9F 0 235 EO X 057
11 X 34F 56-57 X 057 oF 1 059 E1l X 2AA |
12 X 345 58 X 404 A0-Af| X 059 E2 0 076
13-14 X 059 59 X 321 B0 X 496 ES 1 057 |
15 X 40E 5A X 42F B1 X 498 E3 0 340 |
16-17 X 059 5B X 43B ([ B2 X 4B6 || E3 '} ' 057
18 X 400 5C X 447 B3-B4| X 4E7 Ed 0 33C
19 X 418 5D X 463 B5-BF| X 059 E4 1 | 057
1A X 42A 5E-5F| X 057 co-C1| X 19A || E5 X 057
1B X 136 60 X 057 02 0 03F E6 X 600 |
1C X 442 61 % 136 C2 1 058 E7 X | 60C |
1D X 45E 62-63 X 057 C3 X 15E ES X 619
1E-1F | X 059 64-65 X 2E9 || C4 X 154 E9 X 62C
20 X 172 66-67 X 30D |[ C5 X 149 EA X 1C9
21 X 178 68-6F X 057 Cé6 X 158 EB X 1C3
22 X 188 70 X 542 C17 X 15C || EC X 1BD |
(23 X 18C 71-73 X 057 C8 X 12E ED X 1B2 |
24 X 128 74 X 2D9 || C9 X 14C || EE X 1E8
25 X 12A 75 X 2DD || CA X 13D || EF X 1D8
26 X 134 76 X 2EI || CB X 145 FO X 057
27 X 13F (Kl X 2E5 || CC X 1B8 || F1 X 4A 0
28-2D| X 059 78-7TA| X 67B || CD X 1AD || F2 X 4BF |
2E X 32D 7B X 655 CE X 1E1 F3-F4 X 4EE |
2F X 333 7C-1D| X 678 || CF X ICF || F5-F7] X 057
30-37 X 059 TE-1F| X 057 DO X oD || F8 X 2C9 |
38-3A| X 657 80-8F X 059 D1 X 0F2 || F9 X 2CD |
3B X 651 90 X 1B8 || D2 X 169 FA X 2D1 |
3C-3D| X 657 91 X 1AD || D3 X 162 FB X 2D5 |
3E-3F X 059 92 X 165 D4 X 16E || FC-FF| X 057 |
40 X 130 93 X 160 D5 0 269 |
41 X 1AA ][ 94 X 16C || D5 1 058

42 X 183 95 0 2A6 || D6 0 287

43 X 195 95 1 059 D6 1 058

44 X 154 96 0 282 D7 0 287

5-12



7.0 I/O SOFTWARE PROGRAMMING

7.1 Introduction. An I/O software instruction will cause information to
be transferred on the I1/0 Mus Bus. The information transferred can be
either a device address, command byte, status byte or data word. The proc-
essor identifies the information being transferred by setting a flag.

A device address is an 8-bit number assigned to an I/0 device. The 1/0
Mux Bus is made up of common data lines and control flags going to all devices.
Therefore, the processor needs a way of selecting only one of the devices to
communicate with. The processor uses a device address to select a device.
Only the addressed (selected) device can receive a command from the proc-
essor, send its status to the processor or transfer data.

A command byte is an 8-bit word the processor can send to the addressed
device. The command controls the device. For example, a command can tell
a device to do a DMA transfer.

A status byte is an 8-bit word the addressed device can send to the
processor. The status of a device tells the processor about the condition of
the device. For example, it can tell the processor if the device is busy doing
an operation or if it is having problems completing an operation.

Data transferred will be either 8-bit or 16-bit words. The addressed
device controls the Halfword Flag (THW) which when set tells the processor
that the device transfers 16 bits of data at a time. If THW is not set, the
device transfers only 8 bits of data at a time. A write is from the processor
to a device, and a read is from a device to the processor.

The basic 1/0 operations a programmer can perform are 1) Acknowledge
Interrupt, 2) Sense Status, 3) Output Command, 4) Write Data and 5) Read
Data. The processor breaks these operations into two or more 10 micro-
instructions. The microinstructions performed by the processor for each
type of operation is shown in Table 7-1.

Table 7-1 only shows the Read and Write Halfword instructions. There
are other types of read and write instructions but only Read Halfword and
Write Halfword can be used with 16-bit oriented devices. All other read and
write instructions only transfer bytes of data. When using the RX format
of a byte transfer instruction, an even memory address refers to the MSB

byte of a memory location, and an odd memory address refers to the LSB
byte of a memory location.

7-1



Table 7-1.

I1/0 Instruction Sequences

SOFTWARE INSTRUCTION

MICROINSTRUCTION OPERATIONS

FLAG OPERATION
Acknowledge Interrupt(AIR)| TACK Interrupting device places its address
on TD08-15 and sets TSYN.
Sense Status(SSR) TADRS| Processor places device address on
TDO08-15 and waits for TSYN.
TSR Device places its status on TD08-15
and sets TSYN.
Output Command(OCR) TADRS| Processor places device address on
TD08-15 and waits for TSYN.
TCMD Processor places command on TDO08-15
and waits for TSYN.
Write Halfword(WHR) TADRS| Processor places device address on
TDO08-15 and waits for TSYN.
IF DEVICE SETS THW:
TDA Processor places data on TD00-15
and waits for TSYN.
IF DEVICE DOES NOT SET THW:
TDA Processor places 8 MSBs of halfword
on TDO08-15 and waits for TSYN.
TDA Processor places 8 LSBs of halfword
on TDO08-15 and waits for TSYN.
r?Read Halfword(RHR) TADRS | Processor places device address on
TDO08-15 and waits for TSYN.
IF DEVICE SETS THW:
TDR Device places data on TDO00-15 and
sets TSYN.
IF DEVICE DOES NOT SET THW:
TDR Device places first 8 bits of data on
, TDO08-15 and sets TSYN.
TDR Device places second 8 bits of data

on TDO08-15 and sets TSYN.

7-2




Sl

MAB  Pcc o anly 16hi1 1Jo
. B
s 3 Flgs (< 7-2) i
Cdf“ . J |
INTERRUPT ACKNOWLEDGE © > Tack
!
|
Ottt Cleys
{ ays _
RACK
TADRS ADDRESS Q/ K4
TEMD COMMAND & > TACK
TDA DATA AVAIL. RACK
TSR STATUS REQ. |
TOR DATA REQ () >
HMP-1116 TSYN SYNCH. «@® TACK
TATN ATTENTION _ i
RACK
TDO00-15 DATA BUS /0 M-n-f o
THW HALFWORD
TACK ‘
[ ]
] 1
L ]
[ ]
BACK
LOWEST
PRICRITY
1/0 DEVICES

Figure 1-2.

HMP-1116 I/O Mux Bus Interface

7-2a



7.2 1/0 Software Instruction Formats

ACKNOWLEDGE INTERRUPT (AIR) 0 78 1112 15
9F R1 R2 (RR)

This instruction acknowledges an 1/0 interrupt and places the interrupt-
ing device's address in the General Register specified by R1. Then that
address is used to address the device and its status is requested. The status
of the device is placed in the General Register specified by R2

Example: | 9F |E |F Reg. E(8:15)+«Interrupting device's address
Reg. F(8:15)«Interrupting device's status

The address of the interrupting device is placed in bits 8 through 15 of
General Register E, and its status is placed in bits 8 through 15 of General
Register F.

SENSE STATUS (SSR) 0 78 1112 15
9D R1 R2 (RR)

Bits 8 through 15 of the General Register specified by R1 are used to
address a device. The status of the addressed device is requested and
placed in bits 8 through 15 of the General Register specified by R2.

Example: | 9D |C | D Address device + Reg. C(8:15)
Reg. D(8:15) « Addressed device's status

The status byte of the device specified by General Register C is placed
in General Register D.

OUTPUT COMMAND (OCR) 0 78 11 12 15
9E R1 R2 (RR)

The General Register specified by R2 contains a command for the device
specified by the address in the General Register specified by R1.

Example: | 9E |A |B Address + Reg. A(8:15)
Command « Reg. B(8:15)

The device specified by General Register A bits 8 through 15 is sent the
command in bits 8 through 15 of General Register B.

WRITE HALFWORD (WHR) 0 78 11 12 15
98 R1 R2 (RR)

7-3



The General Register specified by R1 contains a device address. The
General Register specified by R2 contains 16 bits of data for that device.

Example: | 98|89 Address « Reg. 8(8:15)

Data « Reg. 9(0:15) | (If THW is set)

Data « Reg. 9(0:7)

Data « Reg. 9(8:15) }——(If THW is not set)

The device specified by General Register 8 is sent the 16 bits of data in
“General Register 9, The data is sent as a 16-bit halfword if THW is set, or it
is sent as two 8-bit bytes if THW is not set.
READ HALFWORD (RHR) 0 78 11 12 15

99 R1 R2 (RR)

The General Register specified by R1 contains a device address. The

General Register specified by R2 will be loaded with 16 bits of data received
from the device.

Example: | 99|6(7 Address « Reg. 6(8:15)

Reg. 7(0:15) « Data | (If THW is set)
Reg. 7(0:7) « Data } )
Reg. 7(8:15) « Data ———(If THW is not set)

The processor receives 16 bits of data from the device specified by
General Register 6. The data is loaded into General Register 7. The data
is received as a 16-bit halfword if THW is set, or it is received as two 8-bit
bytes if THW is not set.

7.3 Sample Programs. The following programs are written using the
Processor Maintenance Panel (PMP) as an I/0 device. The PMP is a byte
device and it is assigned device address '01'. The Thumbwheel switches are
data read from the PMP, and the Displays are data written to the PMP. When
writing bytes of data to the PMP, the first byte sent will be placed in the two
LSDs of Display 2 and the second byte written will be placed in the next two
LSDs of Display 2. The MSD of Display 2 will remain a '0'. When reading
data from the PMP, the first byte read will be the two LSDs of the Thumb-

wheel switches, the second will be the next two LSDs of the Thumbwheel
switches.

7-4



1/0 PROGRAM #1

Continuously display the contents of the Thumbwheel switches in Display 2.

‘ START ’

GZ-v1L91

Put PMP device address in General Register 0 (LIS)

LOAD REG. 0
WITH ‘01’

oA Eap Load Thumbwheel switches into General Register

1 (RHR)

SEND PMP THE
DATA IN REG. 1

Write the contents of General Register 1 to
Display "1 (WHR)

q‘
BRANCH .
Branch unconditionally to repeat Read and Write

(BFBS)
MEMORY MEMORY INSTRUCTION
LOCATION CONTENTS MNEMONIC COMMENTS
1000 2401 LIS (Reg. 0) « '01'
1002 9901 RHR Address « (Reg. 0),
(Reg. 1) « Data
1004 9801 WHR Address « (Reg. 0),

Data « (Reg. 1)
1006 2202 BFBS Branch to '1002'



I/0 PROGRAM #2

Make Display 2 count from '0000' to 'FFFF', continuously. (Must be visible)

I break this program into three main functions, 1) Initialization of
Registers, 2) Display and Increment Count and 3) Arbitrary Delay to slow
count enough to make it visible.

1) Initialization

92Z-v1L91

b it Reg. 0 contains device address (LIS)
[ T
O RBIREG: 2 Initialize count to zero (LIS)
WITH ‘0000’
2) Display and Increment Count
Since the panel displays the first byte sent
LA OEG:2 (the MSBs) in the two LSDs of Display 2, it
EXCHANGE BYTES is necessary to exchange the bytes of the

count before display. (EXBR)

Write count to Display 2 (WHR)

SEND PMP THE
DATA IN REG. 2

1

ADD ‘1'TO
REG. 1

Increment Count (AIS)

3) Dela
LOAD REG. 3 =8y
WITH ‘0’ ot S
Initialize delay values (LIS)
REG 3 ° Add '1' to delay value (AIS)

Continue adding until delay value carries
out of 16-bit register (BFBS)

YES

BRANCH

Branch urconditionally to update display

7-6



MEMORY MEMORY INSTRUCTION
LOCATION CONTENTS MNEMONIC COMMENTS

1) Initialization

1000 2401 LIS (Reg. 0) + '01'
1002 2410 LIS (Reg. 1) « '0000'
2) Display and Increment Count
1004 9421 EXBR Reg. 2(0:7) « Reg. 1(8:15)
Reg. 2(8:15) « Reg. 1(0:7)
1006 9802 WHR Address « (Reg. 0),
Data + (Reg. 2)
1008 2611 AIS (Reg. 1) « (Reg. 1) +'1"
3) Delay
100A 2430 LIS (Reg. 3) «'0'
100C 2631 AIS (Reg. 3) « (Reg. 3) +'I
100E 2281 BFBS If (Reg. 3) < '10000' then
branch to '100C'
1010 2206 BFBS Branch to '1004'

7.4 External I/0O Interrupt Service

When the computer is interrupted via the I/O mux bus a software program
may be used to service the interrupt. This program is called the external
interrupt service routine. The computer jumps to the service routine by
changing PSWs. When an I/0 interrupt is detected the computer saves the
current PSW in memory locations '0040' and '0042' and loads the PSW from
memory locations '0044' and '0046'. Prior to the interrupt the programmer
must load memory locations '0044' and '0046' with a PSW that will point to the
interrupt service routine.

When interrupt occurs, the current ['0040'] « PSW(0:15)
PSW is saved in memory. ['0042'] « PSW(16:31)

Then the PSW is loaded from mem- PSW(0:15) « ['0044')]
ory with a value that will point at PSW(16:31) «['0046']
the interrupt service routine.

The current PSW must have PSW bit 1 set to enable the 1/0 interrupt to
be serviced. The new PSW must not have bit 1 set.

When the service routine has completed servicing the interrupt, the normal
procedure is to return to the interrupted program by executing an LPSW
instruction using memory location '0040'.



7.5 1/0 Mux Bus Hardware and Timing

The I/0 Mux Bus and its control are shown in the Detailed Functional
Block Diagram in Chapter 3. The four functions controlling the I/0 Mux Bus
are the I/O Mux Bus and Flag Timing Control, Output Flag Control, Input
Flag Control and the Data Transceivers (XCVRS).

When the I/0 Mux Bus and Flag Timing Control decodes an Input micro-
instruction (Op-code '4') it sets XIN (Input Data Enable), when it decodes
an Output microinstruction(op-code '5') it sets QODE(Output Data Enable).
XIN causes the XCVRS to place TD00-15 on the B-bus. QODE causes the
XCVRS to place the A-bus on TD00-15. The I/0 Mux Bus and Flag Timing
Control also sends XERDSTP to the Multiple Clock Cycle Control when it
decodes an Input or Output microinstruction.

When the Multiple Clock Cycle Control receives XERDSTP, it stops the
microprogram on the 10 microinstruction and sets QSMTH(Single Cycle
Control) active. When the I/0 Mux Bus and Flag Timing Control sees QSMTH
it sends XOFE (Output Flag Enable) to the Output Flag Control. The Output
Flag Control sets one of the output flags (TCMD, TSR, TDR, TDA TADRS or
TACK) based on QRD22-26 (the OF field).

When the Input Flag Control receives TSYN (Sync Control) from a device

it sends XCOMP (Sync Received) to the I 'O Mux Bus and Flag Timing Control.

The I/0 Mus Bus and Flag Timing Control holds XERDSTP active until it
receives XCOMP. If TSYN is not received and 35 microseconds elapse from
when the output flag was set, the 1/0 Mux Bus and Flag Timing Control

automatically terminates the I/0 operation and allows the microprogram to
continue.

Page 7-9 shows the timing of the flags and data for the three types of
output microinstructions, Address, Command and Data Available.

Page 7-10 shows the timing of the flags and data for the three types of

input microinstructions, Data Request, Status Request and Acknowledge
Interrupt.

Page 7-11 shows the detailed timing of an Qutput microinstruction.

Page 7-12 shows the detailed timing of an Input microinstruction.

7-8



1. ADDRESS HMP-1116 —= DEVICE
TDO08-15 -——< DEVICE ADDRESS >___
|_ 200 NS . | 100 NS |
I —_—
TADRS

HMP-116 = DEVICE

|¢—.-| 50-100 NS TYPICAL

TSYN
DEVICE - HMP-1116
2. COMMAND HMP-1116 — DEVICE
T008-15 ___—< COMMAND >
L 200 NS . 100 NS I
! - "
TcmD
HMP-116 — DEVICE
Io—-' 50-100 NS TYPICAL
TSYN
DEVICE — HMP-1116
3. WRITE HMP-1116 = DEVICE
TD08-15 DATA WORD
(TD00-15 FOR
HW DEVICES) L T - et I
I bl s - ™
TDA
i e
'4—.! 50-100 NS TYPICAL
TSYN

DEVICE = HMP-1116

*FLAG REMAINS ACTIVE 400NS TYPICALLY,
200 NS MINIMUM AND 35 uS MAXIMUM

HMP-1116 IOM Bus Outputs

L2-v1L9T



»

1. READ

TDR

TDOo8-15
(TD00-15 FOR
HW DEVICES)

TSYN

STATUS REQUEST

TSR

TDO08-15

TSYN

ACKNOWLEDGE INTERRUPT

TACK

TDo08-15

TSYN

THIS PROPAGATION DELAY WILL -
INCREASE AS THE PRIORITY i
OF THE INTERRUPTING DEVICE

DECREASES

HMP-1116 = DEVICE

|
-

|
200-400 NS
= |

DATA WORD

—

>— DEVICE — HMP-1116

100-200NS

r DEVICE — HMP-1116

HMP-1116 = DEVICE

i 200-400 NS

STATUS

—<

}. DEVICE — HMP-1116

100-200 NS

r DEVICE — HMP-1116

HMP-1116 — DEVICE

—a| 200-400 NS

—

DEVICE ADDRESS

F DEVICE = HNiP-1116

#1 100-200 NS

r DEVICE = HMP-1116

HMP-1116 IOM Bus Inputs

g2-viL91



CLKO

CLK2

RDR

X110

XERDSTP

QODE

XoUT

QSMTH

XOFEJ

QOFE

XOFE

QCOMP

SYNC

QOFED

[s] 200 400 600
X
* OUTPUT MICROINSTRUCTION *
ENABLE DATA OUT
—_——] _.-q
— )
-ﬁ
:
L ?
e <)
—
W
—
——q

DATA OUTPUTTED AT 100 NS

FLAG OUTPUTTED AT 300 NS

6C-v1L91

Output Microinstruction Timing



CLKO
CLK2

ROR

X110

gFRDsrp
(XEDSTP)
XIN

DEST CLK
QSMTH
XOFEJ
QOFE
QOFED
XOFE
SYNC

QCompP

200

[

Y INPUT MICROINSTRUCTION

=

IENABLE INPUT DATA

]

INPUT DATA LOADED AT 800 NS

OUTPUT FLAG AT 300 NS

OE-vI/91

Input Microinstruction Timing



8.0 INTERRUPTS

8.1 Introduction. Interrupts are caused by either a fault condition within
the HMP-1116 or a request from an external device. The computer services
interrupt with either software or firmware routines.

When an interrupt occurs that is serviced by software, the microprogram
exchanges the PSW using the appropriate reserved memory locations. The
new PSW read from memory will point to the software service routine. The

microprogram saves the old PSW in memory so that after the interrupt has been

serviced the interrupt service routine can return to the interrupted program.

Firmware serviced interrupts are handled completely by the microprogram.
After the interrupt has been serviced, the microprogram returns to the inter-
rupted software program. Four interrupts are serviced by the microprogram;
1) PMP "Execute", 2) PMP "Single Mode", 3) Primary Power Failure and 4)
Remote Program Load.

Section 8-2 outlines fault type interrupts internal to the HMP-1116, and
how they are enabled, detected and serviced.

Section 8-3 describes I1/0 Mux Bus interrupt service.

Section 8-4 contains the Functional Flowcharts for the HMP-1116. These
Flowcharts show how the microprogram responds to interrupts.

HMP-1116

INTERRUPT

TYPES

*1. Machine Malfunction

2. Fixed Point Divide Fault
3. Floating Point Divide Fault
4. Privilege Mode Violation
5. [Illegal Instruction

#*6. 1/0 Interrupt

[**7. Console Attention

? %8, Single Mode

? *9. Primary Power Fail

*Or'ed to generate Xintrpt to Instruction Decode ROM



PROGRAM STATUS WORD

PROGRAM STATUS BITS LOCATION COUNTER
5 N
« o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 31

wi |l & Lmmlor| as | ee | cT | ] R0 g:ganno clvlcl L | apreno ToO PROG BANK FOR INSTRUCTION ADDRESS

8IT0SET TO 1 = WAIT MODE . — e o
BITOSET TO 0 = NORMAL OPERATION
LESs THAN (Power Failure Detect)
GReATER THAN (Parity Error on Instruction Read)

OVERFLOW (Parity Error on Operand Read)

CARRY o 0y
save (Memory Violation)

81T 7 SET TO 1 = PROTECT MODE

BIT 7 SET TO 0 = SUPERVISOR MODE

. ; . 64K BYTE MEMORY MODULE
when Bit 7 is set to 1 privileged (4 MAX.) WHERE DATA IS
instructions will be treated as ACCESSED
illegal ins tructions 64K BYTE MEMORY MODULE

(4 MAX.) WHERE
INSTRUCTIONS ARE FETCHED

MEMORY REGION

.
N
PSW BITS
8-11 INSTRUCTION DATA
0000 0-FFFF O-FFFF BITO WAIT STATE (WT)
0001 0-FFFF 10000-1FFFF 8IT1 EXTERNAL INTERRUPT ENABLE (E1)

° ° - BIT 2 MACHINE MALFUNCTION INTERRUPT ENABLE (MM)

° ° PY 8IT 3 FIXED POINT DIVIDE FAULT INTERRUPT (DF)

° P P BITA4 AUTOMATIC 1/0 AND IMMEDIATE INTERRUPT ENABLE (AS)
0100 10000-1FFFF 0-FFFF BITS FLOATING POINT FAULT INTERRUPT LNABLE (FP)
0101 10000-1FFFF 10000-1FFFF BIT 6 CHANNEL TERMINATION INTERRUPT ENABLE (CT)

° ° = eiT7? PROTECT MODE (PM)

P ° ° BITS 8 AND 9 PIROGRAM BANK ADDRESS (PB)

° . . BITS 10 AND 11 OPERAND BANK ADDRESS (0O8)

1111 30000-3FFFF 30000-3FFFF B1TS 12 THRU 15 CONDI TION CODE (CC)

€1-p1291

e1-8

Figure 2-1. Program Status Word



*10. Remote Program Load

*Or'ed to generate Xintrpt to Instruction Decode ROM

8.2 Internal Interrupts

I.

Il.

III.

Machine Malfunction

A.

Caused by:

1. Protected Memory Violation (C flag set)

2. Parity Error on Instruction Read (G flag set)
3. Parity Error on Operand Read (V flag set)

4. Early Power Failure (L flag set)

Enabled by PSW bit 2

Old PSW at '38', New PSW at '3C'

Detected between software instruction (IFCH)

Fixed-Point Divide Fault

A.
B.
C.

D.

Caused by divide Overflow
Enabled by PSW bit 3
Old PSW at '48', New PSW at '4C'

Detected by Divide Instruction

Floating-Point Arithmetic Fault

A.

B
C.
D

Caused by Floating Point Exponent Overflow or Underflow
Enabled by PSW bit 5
Old PSW at '28', New PSW at '2C'

Detected by Floating-Point Insruction



IV. Protect Mode Violation
A. Caused by Executing a Priveleged Instruction
B. Enabled by PSW bit 7
C. Old PSW at '30', New PSW at '34'
D. Detected when Software Op-code Decoded (SFDC)

V. Illegal Instuction

A. Caused by Executing an Undefined Instruction
B. Always Enabled

C. Old PSW at '30', New PSW at '34'

D. Detected when Software Op-code Decoded (SFDC)

8.3 I/O Mux Bus Interrupt Service. Any I/O device, including the
Processor Maintenance Panel, the Memory Protect Card (MPC, Chapter 9),
the Programmed Controlled Clocks (PCC, Chapter 9), or any other device
connected to the 1/0 Mux Buss is considered an EXTERNAL device. The

term EXTERNAL, in this situation imples EXTERNAL to the PROCESSOR
itself,

External devices interrupt the Processor with TATN (attention flag) and
thereby request some interactive servicing of their needs, External devices can
have data for the Processor or Memory, require data from the Processor or
Memory, or have some fault to report in a status message.

There are three methods available to the Processor for servicing external,
I/0 MUX Bus interrupt sources.

Two methods for servicing External, I/0 interrupts are the IMMEDIATE
INTERRUPT SERVICE and the CHANNEL COMMAND BLOCK method, These
two methods are termed "Automatic' I/O servicing because the firmware automati-
cally responds to TATN with the proper interrupt Acknowledge Signal (TACK),
The Automatic I/O servicing methods are described in Chapter 8,

The third method for servicing External, 1/0 interrupts is the EXTERNAL
1/0 INTERRUPT SERVICE. This technique is described in Section 7-4 and is
contrasted to the other two methods in Chapter 8, Figure 1.

The External 1/0 Interrupt Service is not considered "automatic". This
is because the software programmer must determine the step-by-step procedure
for servicing the interrupting device, The software must provide the Interrupt
Acknowledge and provide the other steps in the routine,

8-3



II.

III.

Iv.

PSW bit 1 must be set to enable I/0 interrupts. A device will set the
"Attention" line on the I/0 Mux Bus when it wants to interrupt the

HMP-1116. The computer detects this interrupt between software
instructions (IFCH).

If PSW bit 4 is zero:

A.

Old PSW at '40', New PSW at '44'

If PSW bit 4 is one:

A.
B

Microprogram Acknowledges Interrupt

The Microprogram uses the interrupting device's address to
calculate where in memory the device's Interrupt Pointer (IP) is
located. The location of the IP is calculated as 'DO'+(2*Device
Address). For example, device '01' has an Interrupt Pointer in

memory location 'DO'+@2%'01') = 'D2',
If bit 15 of IP is zero:

1. 0Old PSW at IP, New PSR at IP+4
2. IP+6 is New LOC

If bit 15 of IP is one:

1. IP points to Channel Command Word in Channel Command
Block

2. The Channel Command Block controls a firmware routine
which services the interrupt.

3. When a Channel Command Block finishes its assigned function
it can place its IP in a list called the Channel Termination

Queue. Entries in this Queue will result in an interrupt to
the computer.

Channel Termination Interrupt

A.

B
C.
D

Caused by an entry being made in the Channel Termination Queue

Enabled by PSW bit 6
Old PSW at '82', New PSW at '8¢’

Detected at end of Automatic 1/0 service or when PSW is changed

8-4



V. Channel Termination Queue Overflow Interrupt

A. Caused by Automatic I/O service trying to make an entry into
the Channel Termination Queue when it is full

B. Always Enabled
C. Old PSW at '8C', New PSW at '90'
D. Detected when an entry is to be made into the full queue

The automatic input/output channel executes channel programs that con-
trol the activities of peripheral devices. The execution of channel programs
takes place between the execution of user instructions resulting in a program
delay rather than a program interrupt with an exchange of Program Status
Words. The I/0 channel may generate an interrupt because of abnormal
conditions or because of the occurrence of an event for which the software
had requested an Interrupt. Bits 1 and 4 of the Current Program Status
Word control the operation of the I/O channel. Both of these bits must be
set to permit channel operations. Channel operations also depend on the
interrupt pointer table, the channel control block with its associated channel
command word, and the channel termination queue; See Figure 1.

General Operation. With bits 1 and 4 of the current PSW set, the follow-
ing occurs when the processor detects an interrupt: the processor automatic-
ally acknowledges the interrupt and obtains the device address. It uses the
device address times two to index into the Interrupt pointer table. The
interrupt pointer table starts at location x '00DO' and contains halfword
entries for each of the 256 possible peripheral device addresses. The con-
tents of the table locations point to either a service routine or a channel
command as determined by the value of bit 15. If bit 15 of the entry is zero,
the processor takes an immediate interrupt (Software Service). If bit 15 is
one, the processor activates the I/0O channel. The I/O channel uses the entry
minus one to locate the channel command word. It decodes the channel com-
mand word and performs the required service using the entries in the channel
command block as necessary. See Figure 2.

It should be noted that the automatic I/0O channel works in bank zero
regardless of the setting of the PSW bank indicators. Therefore, channel
control blocks and interrupt handlers must be in bank zero.

If the channel operation for this device is not yet complete, the I/O chan-
nel returns control to the processor. The processor now checks for pending
interrupt signals and, if none are present, continues program execution. If
any are present, it services them before returning to program execution.

If the channel determines that the operation for this device is complete,
it terminates the channel program by storing the device address and final
status in the channel control block, and for data transfers, changes the chan-
nel command word to a no operation.

8-5



BIT 1 OF CURRENT
PSW SET

X,0040'

1/0

IT 4 OF CURRENT
INTERRUPT g .

OLD PSR — ('40")
OLD LOC — ('42')
(‘a4’) = NEW PSR
(‘46’') = NEw LOC

SIGNAL PSW RESET

BIT 4 OF
CURRENT
PSW SET

EXTERNAL
INTERRUPT PSW
EXCHANGE

X*'00D0*

IMMEDIATE INTERRUPT LOCATION

CHANNEL COMMAND WORD LOCATION

X'02CE’

(IP) INTERRUPT POINTER TABLE

X'0080 L A(QUEUE)

OLD PSR — (IP)
OLD LOC — (IP+2)
(IP+4) — NEW PSR
IP+6 — NEW LOC

IMMEDIATE
INTERRUPT PSW
EXCHANGE

15

CHAIN VALUE

DEVICE NUMBER I

STATUS

CHANNEL COMMAND WORD

START ADDRESS OR COUNT

END ADDRESS

COMMAND BYTE

TERMINAL
CHARACTER

CHANNEL CONTROL
BLOCK

15

NO.SLOTS

NO. USED

CURRENT TOP

NEXT BOTTOM

A (CCw)

CHANNEL TERMINATION
QUEUE

Figure 1.

8-6

[e-v1L91



-
-
(4]
CE-vIL91

CHAIN VALUE - REQUIRED IF CHAINING
SPECIFIED
FILLED IN BY CHANNEL *] DEVICE NUMBER I FINAL STATUS [* FILLED IN BY CHANNEL

CHANNEL COMMAND WORD

BUFFER START FOR DATA o START ADDRESS OR COUNT <+ COUNT REQUIRED FOR
TRANSFERS DECREMENT MEMORY AND
BUFFER END FOR DATA & END ADDRESS TEST

TRANSFERS

OUTPUT COIMMAND BYTE COMMAND BYTE TERMINAL CHARACTER REQUIRED IF TERMINAL

CHARACTER CHECKING
SPECIFIED FOR DATA
TRANSFERS

FOR INITIALIZATION

Figure 2. Channel Command Block

The 1/0 channel can now take any or all of the following actions:
1. Make an entry in the termination queue.
2. Chain to another channel command word.
3. Generate an immediate interrupt.

The action taken depends on the bit configuration of the cl:nnel
command word. See Figures 3 and 4.

Channel Command Word. There are three phases involved in channel
operations:

1. Initialization
2. 1/0 operation
3. Termination

All three phases are controlled by the bit configuration of the channel
command word. A single command word can be encoded to perform all three
types of operation.

Initialization. If bit 0 (INIT) is set when the channel decoded the com-
mand word, it resets bit 0 and checks bit 8 (output command). If bit 8 is
set, the channel issues the output command located at the start of the channel
control block plus ten and returns control to the processor. Channel opera-
tions with the device resume when an interrupt signal from the device occurs.
To start channel operations, a simulate interrupt instruction is executed which
will cause the channel to enter the initialization phase. The software may
initialize the device by output command instructions after which channel oper-
ations would begin when an interrupt signal from the device occurs.

I/O Operations. There are five types of 1/0 operations the automatic 1/0
channel can perform. They are:

8-17



EE-Vv1L91

1 2 3 4 5 & 7 & 9 10 11 12 13 14 15
0 0
| —_—
.
BYTES/INTERRUPT
INIT 0
CONTINUE
NOP 1
L cHAIN
READ o o o CH
WRITE o | o 1 L— ouTeuT commAaND
omMT o | 1| o T HMED
L— queue
NULL o | 1|1
—— TERMINAL CHARACTER
Figure 3. Bit Configuration for Channel Command Word



DMT = DECREMENT

RETURN TO
NEXT USER
INSTRUCTION

MEMORY AND g%g';g?,“’éN
TEST READ, WRITE,
DMT.
TOTAL
OPERATION
COMPLETE
?
QUEUE
oy YES
LIST
CHAINING NO
WANTED ?
STORE CHAIN
VALUE IN
AUTO 1/0
SERVICE TABLE
RETURN TO
THIS YES NO
INTERRUPT - CONTINUE
SERVICE ?

vE-LILII

Figure 4. Automatic 1/0

8-9



1. READ

2. WRITE

3. DECREMENT MEMORY AND TEST
4. NO OPERATION

5. NULL

For read and write operations, bits 12-15 must contain the number of
bytes to be transferred on each interrupt signal. All zeros in thes.e bit
positions indicate that sixteen bytes are to be transferred on each interrupt
signal. The next two halfwords following the channel command word must
specify the beginning address of the I1/0 buffer and the ending address of
the I/0 buffer. After the specified number of bytes has been transferred,
the starting address is incremented the appropriate amount and compared to

the ending address. If it is greater, the channel enters the termination
phase.

If it is less, the channel returns control to the processor for program
execution.

Bit five controls the optional terminal character data transfer. When
this bit is set, the transfer proceeds as described above with the exception
that the last byte transferred on each interrupt signal is compared with the
terminal character byte located at channel control block plus eleven. If
these two bytes match, the channel enters the termination phase.

Before starting a data transfer, the Automatic I/0O Channel checks the
device status. Any non-zero status condition will stop the transfer and
cause the channel to enter the termination phase. Before entering the
termination phase, the Initial (INIT) bit and No Operation bit are set in the
Channel Command Word, the Queue bit is set to force an entry in the Termin-

ation Queue, and the Chain bit and Continue bit are reset to prevent
chaining.

The Decrement Memory and Test Operation causes the value contained in
the halfword immediately following the Channel Command Word to be decre-
mented by one for each interrupt signal. The new value is compared to zero.
If greater than zero, the channel returns control to the Processor for pro-
gram execution. If equal to zero, the channel enters the termination phase
without changing the Channel Command Word to a "no operation”. Subse-
quent interrupt signals from the device will cause the count field to increase
negatively. The No Operation code in the Channel Command Word indicates
that the channel is to ignore any interrupt signal from the associated device.
The channel itself sets this code in the command word on completion of data
transfers. The software can use this code to ignore unsolicited interrupt
signals. The Automatic 1/0 Service Table should contain pointers to "no
operation" control words for all non-existent devices,



The Null Operation differs from the No Operation in that, while no I/0
function is performed, the channel enters the termination phase without
setting the No Operation code.

Termination. The Automatic I/0 Channel enters the termination phase
upon completion of a data transfer, when the count field of a Decrement
Memory and Test Operation has reached zero, or when the Null Operation is
decoded. All of the operations in the termination phase are optional. If
none are specified, the channel returns control to the Processor. The two
termination functions are Queue and Chain. Bit 6 of the Channel Command
Word controls queuing. If this bit is set, the channel, on entering the
termination phase, stores the address of the Channel Command Word in the
Channel Termination Queue. The condition of Bit 7 of the Channel Word con-
trols positioning with the queue. If Bit 7 is set, the entry is made at the
bottom of the queue. If Bit 7 is reset, the entry is made at the top of the
queue.

The channel termination queue is located at the address specified by the
termination queue pointer. The termination queue pointer is located in low
core at X'80-81' with the channel 1/O termination parameters. When the
automatic 1/0 channel enters the termination phase with queuing specified,
an automatic 1/0 channel termination interrupt is generated causing a PSW
swap if bit 6 of the PSW is set. This notifies the software of the completion
of a channel I/0 operation.

If the processor attempts to enter an I/O channel termination pointer in
the termination queue and the queue is already full, a channel termination
queue overflow interrupt is generated.

The 1/0 channel termination pointer is saved and a PSW swap occurs

allowing software to clear the queue before any channel 1/0 terminations are
lost.

Bit 10 of the Channel Command Word controls chaining. In this operation,
the channel stores the first halfword of the Channel Control Block in the
appropriate location in the Automatic 1/O Service Table for this device. This
chain value may be either the address of another Channel Command Word or
the address of PSW exchange location for the Immediate Interrupt. Subse-
quent interrupt signals will be handled as indicaed by this value. If the
Chain bit and the Continue bit (Bit 11) are both set, the channel checks the
new value placed in the Service Pointer Table and takes appropriate action
before returning control to the Processor. In this way, depending on the new
value stored in the Service Pointer Table, the channel can either generate an
Immediate Interrupt or start another channel program.

Channel 1/0 Programming Example. This example is for the card reader
whose physical address is X'04'. The progam is set up to:

1. Issue an output command to start the device.

2. Read 80 columns of data into memory, 2 bytes per interrupt signal.

8-11



3. On completion of the transfer, the automatic 1/0 channel enters
the termination phase by chaining to an immediate interrupt and
causing the interrupt to occur.

The channel command block is shown in Figure 5. The chain value points
to an immediate interrupt location. The status byte and device number are
set to zero.

The command word is set to initialize, output command, chain, and con-
tinue and transfer one byte per interrupt signal. The next two halfwords
point to the beginning and ending buffer addresses. The output command is
set to issue the Feed command to the car reader. A simulate interrupt is
issued specifying device address X'04' to get the operation started. The
channel then issues the output command, resets the initialize bit and gives
control to the processor for the execution of normal instructions. As each
interrupt signal is received from the device, the channel inputs two bytes
until 160 bytes (80 colums) have been read in. Between each interrupt
signal, control is returned to the processor.

After the last byte has been transferred, the no operation bit in the
channel command word is set and stores the chain value in location X'D8',
interrupt pointer table entry for device X'04'. An interrupt is now generated
which informs the software that one card has been read. The software can
now do the following to enable the I/0O channel to read another card.

1. Put the address of the channel control block in the interrupt
pointer table.

2. Reset the no operation bit, and set the initialize bit of the channel
command word.

3. Reset the beginning buffer address (this may be determined by a
Get Buffer routine).

4. Check device status for successful 1/0.

5. Inform card reader command processor that the card reader
data is ready for conversion and sending.

6. Set the device status and the device number to zero.

If, during the data transfer the channel had received a bad status from
the card reader, it would have terminated the operation by setting the initialize
and no operation bits in the channel command word, suppressed chaining, and
forced on entry at the top of the channel termination queue.

8.4 Functional Flowcharts. The Functional Flowcharts summarize the
main control functions of the HMP-1116 microprogram. They begin on sheet
1 with the Power Up Routine. This routine begins at microprogram address
'000" and it is executed at power up and following every Master Clear.




ADDRESS OF IMMEDIATE INTERRUPT ROUT. CHAIN VALUE

X'00' X'00'

X ‘80B2'

ADDRESS OF BUFFER START

ADDRESS OF BUFFER START + 159

OUTPUT P~
COMMAND X'60 NOT USED

CHANNEL COMMAND WORD X ‘soB1’

0 1 2 3 4 S 6 7 8 9 10 11 12 13 14 15

1lolololololo]Jo]lr]Jojr]lrjofjofjrjo
INITIALIZE —

TWO BYTES/INTERRUPT SIGNAL

CONTINUE

CHAIN

e OUTPUT COMMAND

SE-PILIl

Figure 5. Channel Control Block for the Card Reader

8-13



Sheet 2 begins with the Wait Loop. The microprogram waits here after
PSW bit 0 has been set. Any one of the following interrupts will cause the

microprogaam to leave the Wait Loop:

1)
2)
3)
4)
5)
6)

The microprogram determines which int

Machine Malfunction (MALF)

Primary Power Failure (PPF) (any power fault)

I/0 Mux Bus Interrupt (TATN) (the Attention flag)
PMP Execute (CATN)

PMP Single Mode (SNGL)

Remote Program Load (XFST)

the appropriate actions.

errupt has occurred and takes

8-14



0oLC

SET UP
CONSTANTS

PROGRAM LOAD

MEMORY TEST

MEMORY
OPERATIONAL "

HESTOME

Psw, CPR

AND GENERAL
RECISTERS

BRANCH TO
XXPGLO
OIFE

LRANCH TO
KXMEMTST
QIFF

BRANCH TU
COLOSTRT
00FC

SEY
MEMORY
OPERATIONAL

L

ADDRESS
PANEL AND
CET STATUS

RUN MOOE *

‘38" - MAR
MACHINE
MALFUNCTION
INTERRUPT
ENABLE
NO

BRANCHTO

PROGRAM
LOAD
INITIALIZATION

PERFORM
MEMCRY
TEST

TEST FOR
PROM MEMORY

601,604
I Sll/Rmm
| ATTEMT TO
LOAD PROGRAM
| FROM AMM
I SET UP DATA
M NO FOR ERROA
| OISPLAY
BRANCH TO BRANCH TO
IDLE cuTOoIS
o083 ooes
GHEET S SHEET S

BRANCH TO
GENSWAP
0038

SHEET 6

9E-v1L9T

HMP-1116 Functional Flowchart Power Up Sheet 1 of 8

8-15



SLY waiT
LIGHT

ANY INTERAUPTS *

RESLT waiT
LIGHT

MALF PoF,
CATN, SNGL OR

l 203c

ACSCT walT

XFST Y

BRANCH TO
TEST

o018
S=EET 6

BRANCH TO
R
o10C

OLO PEw.MACHINE
MALFUNCTION
INTERRUSTY

LIGHT
2030 sec?
Sia sToac
>w com
ome o AND GEnERAL
ACCIsTLARS
NO
vi BRANCH TO
s xrsT
arec
~O
38 - waR

SWAP Py
SAVING
CvGL

BAANCH TO
TEST 1

SmELT s

BRANCw 1O
consER
oote
SHEET o

BRANCH TO
O™

oose
SmEET 2

BHANCH TO
GCw

BRANCH T
TEsY

3¢

=L s

LE-PTLIT

HMP-1116 Functional Flowcharts Power Down/Interrupt Service Sheet 2 of 8)

8-16



LOAD NEW
INSTRUCTION

BRKPTEN ?

B8RANCH TO
PIHELP

0033
SHEET 2

BPIFETCH

002E

BRANCH TO
BREAKPT

3E4

002¢C
INCREMENT
LOCATION
COUNTER
PFOC
YES FETCH 2NOD
QIRO1 = H HALFWORD
OF INSTR
NO
SFOC
OECODE ROM
START ADORESS
FOR INSTR,
IS THE vES EXECUTE

INSTRUCTION
VALID?

DECREMENT
0087 LOCATION
00358 COUNTER TO
0059 POINT AT THIS
INSTRUCTION

!

*30' = MAR

1

BRANCH TO
GENSWAP
0038

SHEET 6

INSTRUCTION'S
u SEQUENCES

ABORT AND
QNPT ENABLE ?

HARDWARE
FUNCTION

EXECUTION
COMPLETE ?

BRANCH TO
IFCH
SHMEET )

Q02F

DECREMENT
LOCATION
COUNTER TO
POINT AT BAD
INSTRUCTION

1

BRANCH TO
PIHELP
0033

SHEET 2

8E-vI1LIT

HMP-1116 Firmware Flowcharts Instruction Fetch and

Execution Sheet 3 of 8

8-17



MEMORY
WRITE

00A1l

PANEL DATA
-~ MEMORY

!

BRANCH TO
ouTDIS
ooas

SHEET 5

STATUS

BIT 2 « 4 »

BYTE

ADDRESS
00A6

ADORES

FROM PANEL

- LoC

S

l

BRANCH TO

PSWDIS
oce3
SHEET S
MEMORY
READ
0090
READ
MEMORY
USING

(CHECKING QSNGL)

oces

ADDRESS
THE
PANEL

REPLY

GET THE
PANEL
STATUS

S ATUS BYTE
BIT 3 &2 w2

STATUS
BYTEBIT
2=

OFF, mALT
OR SINGLE
STEP

STATUS BYTE
BIT ] = W

BRANCH

SHEET 5

(RUN)

CURRENT LOC

1/0 SERVICE

(PMP INTERRUPT)

ENABLED

l

BRANCH TO
QuUTDIS

BRANCH TO
10sve

0049
SHEET 7

(PSWO04 = 1)

0099

RESET
WAIT BIT

:

BRANCH~ TO

IFETCH
coac
SHEET 3

6E-vIL9T

HMP-1116 Functional Flowcharts Panel Status Decode Sheet 4 of 8

8-18



or-viL91

\ ek QUTOIS

CHECK
PANEL
STATUS
BYTE
008 A
YES LOA"O REG
PAIR = ’—.
MAR AND MOR
NO
PSWOIS
0081
TAY vES CAD
S uUs BYTE =$W o MAR
BITS » H?
LOC ~ MDR
NO
00C1
LCAD
STATUS BYTE vES INST
~ MAR
A B AND MOR
NO
008%
DISPLAY
MAR AND
MOR
0081
SET waAIT
LIGHT
BRANCH TO
XFST2
Q7F0

BRANCH TO
ENTHLP
005C

SHEET 2

RESET
wAIT
LIGWT
BRANCH TO ~NO
gg'r;s:n (CHECKING GSNGL)
SHEET 4
YES
BRANCH TO
CumvnT
3099
SHEET 2

HMP-1116 Functional Flowcharts Panel Display Service Sheet 5 of 8)

8-19



1/0O SERVICE
ENABLED ?

BRANCH TO
HSSVvC

0048

SHEET 7

(PSW04 = 1)

‘40' = MAR PSW
EXTERNAL INTERRUPT

0038

GENERAL
PSW SwAp

006E

CHAN.

ACCESS TERM

TERM. INT. Queve
PARAMET
ENABLED ? 2 AR

(PSWO06 = 1)

ANY ENTRIES
IN QUEUE ?

BRANCH TO
GENSWAP
0038
SHEET 6

BRANCH TO
WAIT

0079
SHEET 2

WAIT BIT SET ?

BRANCH TO
IFCH
SHEET 3

HMP-1116 Functional Flowcharts 1/O Service Check PSW Swap Routine Sheet 6 of 8

[v-v1L91




03¢

weve

o04s

ACKNOWLEDGE

ACCLSS
stAavicL
POINTER
g

ves
2138

CHANNEL
COMMAND
W~ORD (CTw)

T
oMt OoRNULLY

23s¢C

10
SEviCEs
STATUS

RESLEY =10

CHAIN & CONT
T T
NCP & QuEuE

ISSTATUSCR

|

0JA4
s~eeTa

SRANCH TO
TEAM 4

J
STAAY AQCAS
AND NUMBER
oF

INTERALPY

2187
Agad waITE
SPLCFIEC SPECFICD
UM NUVBL R
CFavTLS LA L4 £

l

|

START
ADCAESS

CECREVENT

COUNT

SEND
COMMAND
1o SEvict

SRANC= TO
v

238¢
s=(Lr?

BAANC= "D
Team?

01a7
smeLv e

~NO

Zrviiol

HMP-1116

Functional Flowcharts Automatic I/O Service Sheet 7 of 8



03JA2

SET NOP

03Aas

?

STORE
NEW CCw

03A7

TORE
STATUS
AND DEVICE
NUMBER

I

QUEUE ON NO

TERMINATICN *

SET 81T 6
IN SR9
QUEUE ENTARY
INDICATOR
03e3
5P~ ('sA")
YES ¢
‘8C' = MAR
= 1
UPCATE QUEUE BRANCH TO
PARAMETERS GOE;?WA"
GET ACDRESS 2
OF LOCATION SHEET &
IN QUEUVE
SP ~ QUEUE
‘82' = MAR

l

BRANCH TO
GENSWAP
0018
SHEET 6

CHAIN ON
TERMINATION *

ENO
3

PUT CHAIN
VALUE
INTO 5P

i

YES

BRANCH TO

SHEET 7

ANY EXTERNAL
INTERRUPTS »

BRANCH TO

SR9 "AND’ PSW

BRANCH TO

EV-vI/91

HMP-1116 Functional Flowcharts Automatic

I/O Termination Sheet 8 of 8

[SV]
8%



9.0 I/O OPTIONS

9.1 Processor Maintenance Panel (PMP). Figure 9-1is a simplified block
diagram of the PMP. The PMP interfaces with the /0 Mux Bus. It is assigned
device address '01', and is a byte device.

Data read from the PMP is the data designated by the Thumbwheel Switches
(the DATA/ADDRESS Switches).

Data written to the PMP is loaded into DISPLAY 1 and DISPLAY 2.

The command to the PMP places it in the normal or incremental mode. The
mode affects how data is read from and written to the PMP.

The status of the PMP is a function of the RUN and SINGLE Pushbuttons,
and the position of the FUNCTION Switch. This status is used by the HMP-
1116 to determine what action the operator at the PMP has specified. The HMP-
1116 firmware samples the PMP status whenever the EXECUTE Pushbutton is
pressed.

The PMP command and status formats are shown in Figure 9-2.

Unlike all other 1/0 devices, the PMP is not connected to the I/O Attention
line. The PMP has its own interrupts; 1) XCATN - goes active when the
EXECUTE Pushbutton is pressed and 2) XSNGL - is active when the PMP is
set up for program execution in single step.

The operator has the capability of simulating an Attention type interrupt
from the PMP by the following switch actions:

1) FUNCTION Switch to OFF/M WR
2) RUN on, SINGLE off

3) Press EXECUTE

In response to these actions, the firmware routine which services PMP inter-
rupts will branch to the 1/0 Mux Bus interrupt service routine.

The firmware service for the PMP is in the Functional Flowcharts on pages
8-17 and 8-18. The detailed functional schematic of the PMP interface card is
on page 26 of the Fuactional Schematics (Chapter 6).

The PMP reads and writes bytes in the order shown in Figure 9-3.

In the Normal mode, a read or write following addressing the PMP will begin
with the First Byte.

In the Incremental mode addressing the PMP has no effect on what data
is read or written next; each data transfer will be of consecutive bytes.



TO/FROM
PROCESSOR

RUN, SINGLE
IFUNCTION SWITCH

1/0 MUX BUS

1/O
TRANSCEIVERS

COMMAND

WRITE SELECT

READ/WRITE
SELECT
CONTROL
DR DISPLAY
DATA REGISTER
(32-81TS)

READ SELECT

THUMBWHEEL THUMBWHEEL
SWITCHES SWITCH DATA
MUX

DATA

8-BITS

STATUS
ENCODER

STATUS
8-BITS

vr-vIL91

Figure 9-1. Processor Maintenance Panel Block Diagram



NUMBER 0 2 2 3 . 5 6 7
STATUS B 12-POSITION FUNCTION
BYTE SWITCH CODE
ge_“lf'g“‘““ NORM | INC X X X X X X

FUNCTION SWITCH MODE SWITCH
POSITION

STATUS BYTE

SGL RUN 0 1 2 3 45 6 7 \
1l1flo]ojololo]o OFF
OFF/MWR ° 1{ojojo]olo]o]o PMP INTERRUPT
L4 X 0jojoj1jojolo]o MEMORY WRITE
— X of1 ojlofofo ADDRESS r MODE
® | x o|l1|{o]o]o]o]o MEMORY READ
(x 1 {100 ]x]|x]|x|x HALT
® 11000 x| x|x|x RUN
o (e 0 olo|x|x X SINGLE STEP )
i x|x|x|x|o]o]1]o
PSW —u
T x|x|%l%lo]1l0l0
RO-1 +—
R2.3 x|x{x|x|1|o]o|o| LecenD:
R4-5 T x|x|x|x|i1|ofo]1
2:‘; x|x|x|[x|1]o]1]0 :] SWITCH OFF
RA-8 Xpxjxixjajolil E SWITCH ON
RC-D X[{x|x|[x[1]1]of0
RE-F xixIxlxlitalal DON'T CARE STATE
x|x|x|x[1]1]1]0
x|x|x|x|1[1]1]1

STATUS FORCED BY PMP LOCK MO IO IO IOIO IO I 0 ]

Figure 9-2. PMP Status and Command Byte

STCIBTE CRALY
READ DATA/ADDRESS WRITE DISPLAY 1 DISPLAY 2
e —— — —— ——
2ND 1ST 4TH 3RD 2ND 1ST
BYTE BYTE BYTE BYTE BYTE BYTE
(INCREMENTAL MODE)
Figure 9-3. READ and WRITE Sequence

9-3

Srvii9l



After Power Up or Master Clear the PMP is in the Normal mode.

ROTARY FUNCTION SWITCH OUTPUTS

POSITION

SFC4

SFC5

wn|
i
(@]
-3

SFC6

RE-F
RC-D
RA-B
R8-9

R6-7

R4-5

R2-3

RO-1

PSW
INSTR
ADRS/M RD
OFF/M WR

0
0
0
0
0
0
0
0
1
1
1
1

0
0
0
0
1
1
1
1
0
1
i
1

0
0
1
1
0
0
)
1
1
0
1
1

T Ot — I — R = I

9.2 Program Controlled Clocks (PCC).

Figure 9-4 is a simplified block

diagram of the PCC. The PCC consists of two clocks; 1) the Real Time
Counter (RTC) and 2) the Elapsed Time Counter (ETC). The functions of
the RTC and ETC are summarized below:

I. Real Time Counter(RTC)

1. 32-bit up counter

2. Starting count can be programmed

3. Current count can be read

4. Counts with 25 microsecond resolution

5. Can generate interrupt on Overflow

6. Max time to Overflow 29.8 hours



II. Elapsed Time Counter(ETC)
1. 16-bit down counter
2. Starting count is programmed
3. Counts with 25 microsecond resolution
4. Can generate an interrupt on Timeout
5. Max time to Timeout 1.6 seconds
The command to the PCC tells it if the RTC is to be read or programmed

or if the ETC is to be programmed. The command also controls whether the
ETC or the RTC can generate an interrupt when they have finished counting.

The status byte of the PCC tells the programmer whether an ETC Time-
out or an RTC Overflow caused an interrupt.

The format of the command and status bytes are shown on page 9-7.

The sequence of software instructions required to Load and Arm the RTC,
Read the RTC and Load and Arm the ETC are shown on page 9-8,



TO/FROM
PROCESSOR

110 MUX BUS

16-BITS

RTC OVERFLOW
16-8BITS (32-B1TS)
]
CONTROL
COMMAND COMMAND
BYTE REGISTER
CONTROL
Y
ETC TIMEOUT
16-BITS (16-BITS)
STATUS 'STATUS -
BYTE

Figure 9-4. Program Controlled Clocks

9-6

9v-v1L91



PCC WORD FORMATS

PCC DEVICE ADDRESS = ‘40’

PCC COMMAND FORMAT:

BITS 8

9

10

11

12

13 14 15
ARM DISARM ARM DISARM
RTC RTC Loao Nan ETC ETC LOAD NOT USED
INT INT R INT INT ETC
BIT INTERPRETATION
8 ARM RTC INTERRUPTS
9 DISARM RTC INTERRUPTS
10 LOAD RTC (32 BITS)
11 READ RTC (32 BITS)
12 ARM ETC INTERRUPT
13 DISARM ETC INTERRUPT
14 LOAD ETC (16 BITS)
15 NOT USED
PCC STATUS BYTE:
BITS 8 9 10 11 12 13 14 15
ETC RTC
X X X X
X X TIMEOUT | OVERFLOW
BIT INTERPRETATION
8 THRU 13 NOT USED
14 ETC HAS COUNTED DOWN TO ZERO
15 RTC HAS COUNTED PAST 'FFFF FFFF'

Ly-vILI]



1) LOAD AND ARM THE RTC

Send Command 'A0'
to Device '40'

Write Halfword to
Device '40'

Write Halfword to
Device '40'

READ THE RTC

Send Command "10'
to Device '40'

Read Halfword from
Device '40'

Read Halfword from
Device '40'

3) LOAD AND ARM THE ETC

Send Command '0A'
to Device '40'

Write Halfword to
Device '40'

OCR

WHR

WHR

OCR

RHR

RHR

OCR

WHR

Command tells the PCC that RTC is to
be loaded and enables RTC interrupts

16-MSBs for the RTC

16-LSBs for the RTC

Command tells PCC that RTC is to
be read

16-MSBs of RTC

16-LSBs of RTC

Command tells the PCC that ETC is to
be loaded and enables ETC interrupts

16 bits for ETC



CLKMO

S 1 I I B B A R B

TADRS

QPCCADR

TSYN

TCMD

QPCCCMD

QLDETC

TDA

QPCCDA

N O I ) O )

s 2

L
=

A

LOAD
CcMD

T

LOAD
ETC

Loading the ETC

BY-v1/91



lnnnnnnnnnnnnnnnn
onnnnnnnnnnnnnnnie

7], ——— )

X
QPCCADR f
TSYN _____” I 9N I I

« W

~

TCMD

QPCCCMD I (
o I

¢ «

QLDRTC ?

X(
XLDOMSB )Y )
X¢ X
e — & —
QPCCDA ) p)3 Y
1« ¢ ?
78
<
QLDLSB v+
*ADDITIONAL ADDRESS LOAD LOAD LOAD
MICROINSTRUCTIONS CcMD MsSB LSB

IN “WH" INSTRUCTIONS
NOT SHOWN

01-6

Loading the RTC

6v-v1L91




XCOUNT

QRDRTC

QMEMCT1

QMEMCT2

QMEMCT3

QMEMCT4

XRTCENC

QRDRTC

XRTCENC

CLKMO

o s

RERR

FTTTTTTTTTTTTTT
[ L

RER)

)
Y

— B
1
ml .

1

NN

L

L1l

L

SEE DATAIL

DETAIL

S |

.
nnnnn.

M_JL
]

I‘— 200 NS

0S-v1L91

RTC Count Saver

9-11



w LM NN NN NT
SEC N I o |

XRTCOF

XRTCENC

XSETOF —l —p

X
— -
2§ &
XPCCACK p — —
TDO9  — S —{
SYNC ) — S

RTC Overflow Interrupt and Acknowledge

9-

161291

12



9.3 Memory Protect Controller (MPC). Figure 9-5 is a simplified block
diagram of the MPC. The function of the MPC is to provide the capability of
protecting blocks of the HMP-1116 RAM Memory from being written into by the
Processor or DMA.

The MPC divides memory into 1,024 blocks of 128 halfwords. The Memory
Protect Map contains one bit for every 128 halfwords in memory. If a bit is
set, its corresponding 128 halfwords in memory are protected.

The word formats of the MPC are shown on page 9-15,

The sequence for programming the MPC is:

Send Command '16!' OCR Disable Protect, Load
To Device 'F9'

Send 128 Bytes Can use 128 WDs, 64 WHs or 1 WB instructions,
To Device 'F9' This programs the Memory Protect Map
Send Command '22' OCR Enable Protect

To Device 'F9'

128 BYTES WRITTEN TO MPC

byte 0 0 1
byte 1 8 9 A B o D E

(V]
w
=N
w

<D
-3

byte 126 | 3F0 | 3F1 | 3F2 3F3 3F4 3F5 3F6 3F7
byte 127 | 3F8 | 3F9 | 3FA 3FB 3FC 3FD 3FE 3FF




PROCESSOR

€ 1/0 MUX BUS
sa COMMAND
("]
o ( —wams N eurren REGISTER
go MEMORY
e VIOLATION 10
PROC. r. .ﬂ
8 OR 1 .
DMA |
B sTATUS [Vio.
! REGISTER j= ’
T .
: |
| L]
L]
LOAD CONTROL AND Hmp1116 |
PROTECT ENABLE MEMORY  *
‘—-'—‘ ! INTERFACE
FUNCTION
l L]
MEMORY | yeMORY | !
PROTECT |ppoTECT !
MAP AND l
" CONTROL !
OF MEMORY J]> .
ADDRESS | 10 BITS | |
8uUs R s 0 sninnind

Z5-v1L9l

Figure 9-5. Memory Protect Controller Block Diagram

9-14



PROTECTS MEMORY

BIT SET LOCATIONS
0 00000 - O00OFE
1 00100 - O001FE
2 00200 - 002FE

D 00D00 - 00DFE
3F4 3F400 - 3F4FE
3FE 3FE00 - 3FEFE
3FF 3FF00 - 3FFFE

Once the MPC is loaded and enabled it will monitor the 10 MSBs of the
Memory Address bus. These 10 bits are used to select the appropriate pro-
tect bit from the Memory Map. If the protect bit for the addressed memory
location is set, the Memory Protect control signals are sent to the HMP-1116
Memory Interface. If the Memory Interface sees these protect signals and a
write is being performed it 1) disables the write operation, 2) sends the
Memory Violation signal to the Processor (which causes a Machine Malfunction

Interrupt) and 3) sends Processor or DMA Violation signals back to the Status
Register in the MPC.

MPC WORD FORMATS

MPC device address = F9

MPC command format:

BITS 8 9 10 11 12 13 14 15
> DMA
X X EN DIS X LOAD CHECK X
Bit
8,9,12,15 Not Used
10 Enable Memory Protection
11 Disable Memory Protection
iz Load Memory Protect Map

When Reset (0) Disables all DMA Writes
Test Function only.



MPC status byte:

BITS g 9 10 11 12 13 14 15
X X X X | DMA | PROC

Bit Interpretation
8 thru 13 Not used
14 DMA Memory Violation
15 Processor Memory Violation

9.4 Read Mostly Memory (RMM). Figure 9-6 is a simplified block diagram
of the RMM. The function of the RMM is to provide a 1,024 byte nonvolatile
read/write memory. The RMM will retain data for a minimum of 10 years with-
out power.

One application of the RMM is to contain a software bootstrap loader. The
microprogram reads the loader program from the RMM and places it into RAM
memory. The loader in the RMM has the advantages of being permanently
stored in the computer (like firmware) and being software reprogrammable.

RMM WORD FORMATS

RMM device address = '41' or '42'

RMM command format:

8 9 10 11 12 13 14 15
1st 2nd
OP-CODE

C NOT USED MSB MSB
819
010 Read Block Bits 14 and 15 are the two MSBs of the
ol1 Read Byte address for a Byte Read. Bits 14 .and 15

are not used for Read Block or Write Block

1]0 Write Block ’
1|1 Invalid Command




L1-6

HMP-1116

INTERVAL TIMER

1710 MUX BUS

CONTROL LINES

170 MUX BUS

SUPPLY VOLTAGE
GENERATION AND
SWITCHING

b

MNOS MEMORY
1024 X 4 BITS

' DATA | LINES

OR
2048 X 4 BITS

CONTROL UNIT A MUX ,’
] STATUS
REGISTER g
4 4
V4 H Lt
— LATC ~—r
L4
g 7
8-BIT
TRANS-
CEIVER
y
A8
DATA _ | ADDRESS COMMAND
1 REGISTER *1 REGISTER REGISTER

Figure 9-6. Read Mostly Memory Block Diagram

ES-PTLIT



RMM status byte:

10 11 12 13 14 15
X X X BUSY X X | X

>4 |0
)

X = Don't care; BUSY = If set (1) indicates RMM is busy.

READ BLOCK OPERATION

Send Command '00' OCR Send read block command
To Device '41'

Read 1,024 bytes RB Read data from RMM
from Device '41'

WRITE BLOCK OPERATION

Send Command '80' OCR Send write block command
To Device '41'

Write 1,024 bytes WB Write Data to RMM
To Device '41'

NOTE: Before Reading, Writing or Commanding the RMM its status should be
sensed to make sure it is not Busy. If the RMM is Busy and an

attempt is made to do one of these operations the results will probably
be invalid.

WARNING: The EAROM used in the RMM has a limited number of write cycles
it can perform in its lifetime (100, 000)

9-18



The Read Byte operation requires the programmer to first send a 10 bit
address to select the byte to be read. The two MSBs of the 10 bit address
are bits 14 and 15 of the Command Byte. The following sequence must be
performed to read one byte:

OCR Send Read Byte COMMAND. The 2
LSBs of X will be the MSBs of the
address of the byte to be read; X will
e 0 . 1 5 2 o0F 3.

SEND COMMAND 4X
TO DEVICE 41

vS-pILoT

y

WRITE ONE BYTE WDR Byte sent is the 8 LSBs of the byte

TO DEVICE 4] address

SENSE STATUS OF

PRICES *SSR Sense the status of the RMM and - - -

YES *BTBS If the RMM is busy, continue to sense
its status. If the RMM is not busy a
A byte of data is available to be read.

READ ONE BYTE
OF DATA FROM
OEVICE 41

*RDR Read data byte from RMM

*
The last three steps of this program can be repeated in order to read
consecutive bytes from the RAM. The RMM will automatically update the
byte address after every data transfer.



10. MEMORY

10.1 Introduction. The HMP-1116 MOSRAM Memory is used to store
software programs and data. The memory consists of up to 4 cards; each
card containing 32K 17-bit words (16-bit halfword plus parity). The memory
capacity can be from 32K to 128K halfwords, expandable in 32K increments.

The RAM Memory chips are 16,384 X 1-bit RAMS. The 16,384 bits are
arranged in a 128 X 128 bit matrix. A 14-bit address is required to select
one bit. Bits 2-8 of the address are called the Row address, Bits 1, 9-14
are called the Column address. The RAM memory bits must be refreshed
every 2 ms. Refresh is performed on one Row of bits at a time (128 bits).
A Refresh operation only requires a 7-bit Row address.

A group of 17 RAMS chips is used to provide 16K halfwords plus parity.
A memory card containing 32K halfwords contains two groups of 17 RAM
memory chips.

Figure 10-1 is a block diagram of the HMP-1116 memory and its control.
The blocks labeled MIF are functions on the Memory Interface card. The
blocks labeled RAM are contained on a RAM memory card (1641763). The

the complete 128K configuration all functions labeled RAM would be repeated
4 times. All RAM cards are identical; the 32K group of addresses a RAM card
responds to is a function of which slot it is in.

The MIF card controls the three functions which access the RAM memory.
These functions are listed below from highest to lowest priority:
 Phese @
1) Refresh Y33 ;

| e

!
Fl

2) DMA (Direct Memory Access) L
3) Processor Memory Access
10.2 RAM Memory. The interface of the RAM memory card consists of
the Memory Enable control signal, Read/Write contro] signals, the Memory
Address Bus and the Memory Data Bus.
The Memory Data Bus (TMDO00-16) is a 17-bit bidirectional bus, The

Memory Data Buffer allows data to flow only into or out of memory for any one
operation. The Memory Write Control controls which way data is allowed to

DMA Devices and the Processor can read out of or write into Memory.
When a Refresh operation is performed, this control signal selects read.

10-1



o
HALFWORD GROUP =
»
16 16 @
L] L]
.' ..
REFRESH <2 s .
REFRESH V‘VQ'O/I 5 l 5
SEQUENTIALLY %A 7 I z
8Y ROWS =
/ I L 3
2 [ 2
1 1
000 CHIP 1] 3]
ROW . p—t -
ADDRESS 2 - -
bac—
SR
— -
e
127 =
\/
—,—’
7
COLUMN ADDRESS

RAM Memory Card (2 HW Groups)

10-2



place a 17-bit address on the Memory Address Bus (TMAA, TMAB, TMAO00-14).
The address specifies one of 128K memory locations. Tl}e 3 MSBs (TMAA,
TMAB, TMAO00) are decoded by the Address Decode Logic. These 3 bits
specify a 16K block of memory (17 memory chips), The Address Decode logic

on the RAM card containing the selected 16K block of memory data generates
the Card Selected signal. This signal allows the memory chips on the selected
card to be enabled. The 12 LSBs of the memory address (TMAO2- 14) pass
through the Memory Address Mux and become XADR 02- 14. XADROZ2-14 along
with TMAO1 is the 14 bit address sent to the memory chips to select one of 16K
words. The row address is enabled to the RAM first. One hundred fifty nano-
seconds later, the column address is enabled by QCASENB.

Memory Enable (QMENB) comes from the Memory Enable Logic. QMENB
will be generated for any memory operation. QMENB will enable the Memory
on a RAM card only if the card is selected by the MSBs of the address or if
the Memory is being refreshed (XREF).

10.3 Refresh. The RAM memory is refreshed approximately every 2 ms.
One hundred twenty-eight cycles are required to completely refresh memory .

The Refresh Interval Counter generates Refresh Time (XJREFTM) every
14.8 microseconds. XJREFTM indicates that it is time to refresh another
1/128 of memory.

The Refresh Request Logic receives XJREFTM and then generates Refresh
Request (QREFREQ) to the Memory Enable Logic. This causes the Memory
Enable Logic to generate QUENB. The Refresh Request Logic also generates
Refresh Memory (XREF). XREF overrides the Address Decode Logic on all
RAM cards in order to enable all memory chips to be refreshed. XREF also is
sent to the Memory Address Mux and selects QREFADB, 0-5 as the memory
address. QREFADB, 0-5 specifies which Row is to be refreshed.

QREFADB, 0-5 comes from the Refresh Address Counter. After the
refresh operation is completed the Refresh Request Logic generates Incre-
ment Address (XREFCNT) which adds one to QREFACB, 0-5 so that it points
at the next Row in memory to be refreshed.

__10.4 DMA. When the DMA Control Logic receives a DMA Request
(TDMAREQ) from a DMA Device it responds by sending a DMA Acknowledge
(TEN) back to the device and sets DMA Request (QDMAREQ) and DMA Mem-
ory Cycle (QMEMDMA). QDMAREQ disables Processor memory access and
QMEMDMA causes the Memory Enable Logic to generate QMENB.

When a DMA Device receives TEN it takes control of the Memory Address
and Memory Data Busses, and it sets DMA Write Request (TDMAWRT) if it
wishes to write to memory. The Memory Write Control sets QWRITE,
QWRTENB and QRDENB to the appropriate states based on TDMAWRT.

When the DMA memory cycle is completed, the DMA Control Logic sends
DMA Strobe (TDMAST) to the DMA Device.

10-3



10.5 Processor Memory Access. The MC field (QRD20-22) in a CTL
microinstruction generates a Processor memory request. This request is
detected by the Processor Request Decoder, which decodes whether this
request is read (XMR) or a write (XMW). Both requests are sent to the
Memory Enable Logic and the write request is sent to the Memory Write Con-
trol. The Memory Enable Logic generates QMENB and the Memory Write
Control sets QWRITE, QWRTENB and QRDENB to the appropriate states.

The Memory Enable Logic sends Memory Request (XMEMREQ) and Proc-
essor Memory Request (XMEMPRO) to the Processor/Memory Interface Con-
trol. The Processor/Memory Interface Control generates 5 signals for the
Processor:

1) XMEMPRO causes Memory Access Granted (QMAG) to be set.

2) XMEMREQ and QWRITE are used to generate Parity Control
(XPMD16) to the Processor's Parity Generator/Checker.
XPMD16 low means generate parity.

3) XMEMPRO and QWRITE are used to generate XEPMDK. XEPMDK
low causes the contents of the MDR to be placed on the Memory
Data Bus (write).

4) QDMAREQ when set generates XEPMAC1 which disables the MAR
and MDR from being placed on the Memory Address and Memory
Data Busses, respectively.

5) QDMAREQ when reset causes XEPMAJ which enables the contents
of the MAR to be placed on the Memory Address Bus.

10.6 Memory Protect Option. The Memory Write Control receives
XPROCWP and XDMAWP from the MPC (Memory Protect Controller) Option.
XDMAWP occurs when a DMA Device tries to write into protected memory.
Either of these conditions result in the write operation being disabled and
Memory Violation (XMEMVIO) being sent to the Processor. XMEMVIO causes
a Machine Malfunction Interrupt.

10.7 Memory Timing. A complete memory cycle takes 600 ns (3 HMP-
1116 clock cycles). The memory logic keeps track of where in the 600 ns
cycle it is by breaking the 600 ns into three phases; Phase 0 (first 200 ns),
Phase 1 (second 200 ns) and Phase 2 (last 200 ns). Figure 10-2 shows the
timing of the Memory Phase Counter. The hardware associated with the
Memory Phase Counter is shown in the Functional Schematics (Chapter 6)
on page 36.

Flgure 10-3 shows the timing of Refresh, DMA and Processor memory
cycles. It is assumed that the Refresh, DMA and Processor requests all
occur simultaneously in the beginnning of the second clock cycle. Therefore,
this diagram also shows how the contention logic works.

Figure 10-4 shows in detail the Read and Write cycles for Processor and
DMA.

10-4



€-01

OMA WRITE CONTROL (TOMAWRAT)
MEMORY
OMA REQUEST Xeaocwe | waive WHITE ENABLE (UWRTENB) :"a’:::‘lc":‘g:s:g:g:
]
10/t ROM MAREQ) FROM CONTROL
DMA OMA OMA MPC XOMAWP READ ENABLE (QROENS)
DEVICE ACKNOWLEDGE |[CONTROL I LT 24 MEMORY VIOLATION
N — ———— -—— —
N (TT) LoGIC (XMEMVIO) MEMORY DATA BUS [ ”~
L—. 70 PROCESSOR P ——————
DMA STHOBE T RETTILTT — ' I
(TOMAST) MIF S X PRIORITY C LS
OP CODE PROCESSOR WRITE l
—_———d —
HD00 02, ; MEMORY "
R @ ' | processon ALQUEST (XMw) TMDO00-16 DATA OATA Aas ADURESS
PROCESSOR REQUEST MEMORY BUFFER CAl ENABLE
MEMORY DECODER ENABLE I
CONTROL PROCESSOR HEAD REQUEST | LOGIC I
(QRD20-22) | MiF 34 (XMA) I RAM 37 RAM 37
-
a3 “
DMA MEMORY CYCLE (QMEMDMA) ] sla l
MEMORY ENAHLE (GMENB) ; |-
MEMOKRY REQUEST (XMEMKEQ) nAN ) a2 |
l b1 <|=
A R
PROCESSOR MEMORY REQUEST c““:_'“" ”:’ £ss | l
NABL
IXMEMPRO) oo 3
UMA REGUEST MEMORY ACCESS I I
(QOMAREQ) PROCESSOR/MEMORY | GRANTED (QMAG)
INTERFACE CONTROL | ¢\ nat & mEM. ADDR | l
HLAD/WHITE CONTHOL (QWRITE)
(XEPMA J) I
ENABLE MEM. DATA
10
IXEPMOK) PROCESSOR J
DISABLE ADDR | I
RAOW/COLUMN
AND DATA (Xepmact) l (QCASENB) ADD"ilst
PARITY CONTROL ENABLE/SELECT l
MIF 34 (XPMD16) l ADDRESS aaM 2l
TMAA, TMAB, TMA00 ' | DECODE | HFWD GROUP
(SELHIGURE 40 ) Loaic SELECTED l
REFRESH REFRESH REQUEST (QREFHEQ) HAM 7
INTERVAL REF RESH l AAM I
CoOurnIER REQUEST REF HESH MEMORY (XREH) 3
LOGIC MEMORY =
REFHLSH TIME (XJREF TM) ADORESS BUS TMAOI l |
HEF RESH = e e wmn " —— e — e om | c— —
INCREMENT ADDRESS ADDRESS TMAO2 14 MEMORY -
EVERY 148 us COUNTER ADDRESS MEMORY ADDRESS (XADROI-14)
(XHEFCNT) QREFADS, 05 MUX ROW/COLUMN ADRS
MIE 35 MIF 35 MIF 33 ROW ADDRLSS MiF 36

Figure 10-1. Memory Block Diagram

9S-vTL9T



LS-vIL9t

CLKMO i ﬂ r-l AI—} '—}‘
XMEMREQ —'—I

]

QMEMCTO l I 1 r

QMEMCT1 l |

QMEMCT2 | | I—.—I
XPHASEOQ l

XPHASE1 Il L |

XPHASE2 | I

XPHAS®2 I I
PHASE NO. 0 O—ﬁi-—l 'i‘ 2 0‘—l~0‘4

Figure 10-2. Memory Phase Counter Timing

10-6



L-0T

TIMING

DMA REFRESH

PROCESSOR

MEMORY CONTROL

FHASE NO.

CLKMO

EREFREQ

QMEMREF

XREF

EDMAREQ

QMEMDMA
TEN
TDMAST

[-QMR/;ZMW

XMEMPRO

_QMAG

[—
QMENB
QWRITE

QWRTENB

QRDENB

L 0

. I
l |
M

PN |

RS

it Hﬁr

PROCESSOR IS WAITING ﬁ

HE

REFRESH | DMA

PROCESSOR

“PROCESSOR REQUEST DECODER DISABLED BY QDMAREQ

Figure 10-3. Memory Contention and Control Timing

8S6-vTL9T



o PHASE NO.|=—0 o—sfe—1 2—+-o 1 -{ 7o fo—1 —o] w2 0 1-—‘-.—2—+—o
z
L — N '~ A M M M N MmN _rn.r
F QDMAREQ
< (35) I |
s XTAPO7 | o | |
Soeuiacs. =W, 7 [y
TOMAWRT === 1 N e
-}
> awriTE (39) 1 1
-
E’z- CPBTER __(1‘)___'_—1 1 1 I
2% sty 2D [ ] L = GENERATE PARITY  rrChECKPARITYLLL = GENERATE PARITY
+ i 0] B
Q- Xmr
wn 34 | I—
wa (34)
0D XMW (33) l F
og (34) r— —
g‘&' XMEMREQ
(34)
@ XMEMPRO g | gaid |
I o (30)
o 4 amAaG 1 I 1 J
a w
E 9 xePMmA 134 I I | B I
— /1
0P% xePMDK e 1
(31)
05’ 132 | 1
mgg T (31) 1 | H = ENABLE DATA TO
oz (30) MEMORY
@95 XLOMDRM —JReAD ol
L"JWU DATA
Ugg DMA READ DMA WRITE PROCESSOR READ —* PROCESSOR WRITE
%oa
ad0

8-0T

Figure 10-4. Processor/Memory Interface Timing

6S-9TLOT



11.0 POWER FAULT DETECT

11.1 Introduction. The HMP-1116 has four DC power supplies. Three
of the power supplies are requred to power the MOSRAM memory, they are
+5V AUX, -5V and +12V. Theywill be active when the computer is switched
to STBY, ON or LOCK. These power supplies are backed up by a battery
for up to 30 minutes in the case of a prime power (115VAC) failure. The
fourth power supply (+5V) provides the power used by the processor. It is
turned on only when the computer is switched to ON or LOCK.

The Power Fault Detect function is responsible for:
1. Monitoring the four DC power supplies voltage levels
2. Controlling the STBY and ON lamps on the PMP
3. Controlling Master Clear
4. Turning on the +5V power supply
5. Generating the Clock Enable for the processor
6. Generating power fail interrupts for the processor
Figure 11-1 is a block diagram of the Power Fault Detect function.
11.2 Compare Logic. The Compare Logic monitors the voltage outputs
of the DC power supplies. Memory Supply Out of Tolerance (XMSOT) will be
active if either +5V AUX, +12V or -5V are out of tolerance. DC Out of

Tolerance (XDCOT) will be active if any one of the four DC power supplies

is out of tolerance. XFVAOT active indicates that the +5V AUX power supply
is out of tolerance.

- 11.3 Lamp Logic. The Lamp Logic receives XDCOT and XMSOT along with
XPPOT which when active indicates that the AC power is out of tolerance. It
also receives SOFF, SSTBY and SONLK. SOFF active indicates that the Key
Switch on the PMP is in the OFF position, SSTBY indicates STBY (standby)
position and SONLK indicates either the ON or LOCK positions.

When SOFF is active, LPON and LPSTBY are inactive disabling the ON
and STBY lamps on the PMP. Also XPPEN is inactive. XPPEN active enables
the +5V power supply and the processor.

When the key is switched to STBY the memory power supplies are turned
on. SSTBY active and XMSOT inactive causes LSTBY to go active turning on
the STBY lamp. XMSOT will remain inactive in a power failure as long as
the battery continues to provide +5V AUX, -5V and +12V.

11-1



When the key is switched to ON, ONLK goes active. If XPPOT is inactive
indicating AC power is in tolerance XPPEN goes active. XDCOT will become
inactive after the +5V power supply is turned on, and this allows LPON to go
active turning on the ON lamp.

__ 11-4 Delay Driver Latch. The Delay Driver Latch is initially reset by
XFVAOT making QPPEN and XFBA inactive. Once +5V AUX is in tolerance
XPPEN will control QPPEN and XFBA. When XPPEN goes active QPPEN goes

active and is sent to the Enable Logic. The Enable Logic generates APPEN
which turns on the +5V power supply.

XFBA goes active 100ms after XPPEN. XPPEN and XFBA active along with

XDCOT inactive disables the APFAIL (any power failure) signal. APFAIL
inactive allows a power up sequence to occur.

11-5. Power Up/Down Sequence Control Logic. The Power Up/Down

Sequence Control Logic controls XTCLKEN which enables the processor clocks.

The processor clocks are disabled at the end of a Down Sequence and enabled
at the end of an Up Sequence. A Master Clear (SMCR) or a power failure
(APFAIL) causes a Down Sequence. The logic remains in the down state
until all power is in tolerance and the Master Clear pushbutton is released.
SMCR will not cause a Down Sequence if SLOCK is active (Key Switch in
LOCK position).

When APFAIL and SMCR are both inactive a Power Up Sequence begins.
Master Clear (XMCR) is removed from the processor and approximately 100ms
later XTCLKEN goes active.

A Power Down Sequence begins by activating QEPF. QEPF can cause a
Machine Malfunction interrupt, and it tells the software program that a
Down Sequence is in progress. After 400 microseconds XPPF is generated.
When the microprogram receives the XPPF 1nterrupt it halts software execu-
tion and saves the PSW and General Registers in RAM memory. 200 micro-
seconds later XTCLKEN is removed and XMCR is generated.

Figure 11-2 shows the timing of the Lamp Logic, Delay Driver Latch,
Fail Logic and Enable Logic.

Figure 11-3 shows the timing of the Power Up/Down Sequence Control
Logic.

11-2



APPLY
POWER
115 VOLTS AC

)

CIRCUIT BREAKER

LINE FILTER

i

KEYLOCK SWITCH

NO POWER
UNTIL WITHIN
TOLERANCE
100-130V AC

OVER/UNDER
VOLTAGE
100-130

POWER
BLOWERS

PS1

POWER
(PROCESSOR)

THERMAL
SENSOR
<158°F

ITO cooL
BELOW 158°F

RUN BLOWERS

OVER TEMP
INDICATOR
ON

(+35)

POWER
(+28)

BATTERY
CHARGER
(+24)

i

AUXILIARY
BATTERY

POWER
PS3
(MEMORY)

{(+12)(+5)(~5)

09-v1£91

Power Decisions Flow Diagram HMP-1116 Power Up Sequence

11-3



FROM

MAINTENANCE

PANEL

MASTER CLEAR

OUT OF POWER
TOLERANCE APPOT ouT
FROM CONTROL (APPOT)| RECEIVER |CONTROL (—XPPOT)
PS1 - an -
PFD
OFF CONTROL { —SOFF) -
LAMP
FROM Y CONTROL (—SSTBY
MAINTENANCE { STANDBY CO Lt ) o] Locic
PANEL
ON CONTROL (—SONLK)
OC OUT OF  __
AU TOLERANCE (XDCOT)
——
+5V PFD
FROM —_— ‘
POWER COMPARE
pisTRIBUTION ) =3V 1 LoGic
MEM SUPPLY OUT OF
+12V TOLERANCE (—XMSOT)
—
5V TOL ( -XFVAOT)
INDICATOR
pro 42

(—XMCR) e
POWER up | POWER FAIL o
MASTER CLEAR (SMCR) | /DOWN (—XPPF)
SEQUENCE I"Fa R Y POWER e
CONTROL | A\ (QEPF TO
PANEL LOCK (sLOCK) | ‘oaic ( ) = PROC-
N PROCESSOR CLOCK ESSOR|
39,40] ENABLE (XTCLKEN)
10C POWER
FAIL
INDICATOR (APFAIL)
ON LAMP CONTROL (—LPON) 1 TO
“ranoey Lawe conTRoL (—LsTev) | MANTENANCE
POWER ENABLE
CONTROL (XPPEN) o
FAIL
LOGI
DELAYED ¢
CONTROL (XFBA)
DELAY PFD 41
DRIVER |POWER
=] LATCH ENABLE 4
CONTROL (QPPEN)
41 41
PFD
3
1
POWER ENABLE
ENABLE CONTROL (APPEN)
LOGIC TO PS1
pro 41

19-v1491

P-11

Figure 11-1. Power Fault Detect Block Diagram



SsSTBY

XMSOT

XPPOT

LSTBY

SONLK

XPPEN

QPPEN

APPEN

XDcoT

LPON

XFBA

APFAIL

KEY SWITCH TO “STBY" l

N —

1) KEY SWITCH TO *"ON"

<

ENABLE +5V POWER SUPPLY

L

[ 100 MS (NTS) ———==]

I ENABLE POWER UP SEQUENCE

=L

Figure 11-2. Standby/On Timing

29-pTL9T



9-11

SMCR OR
APFAIL

*QSYSRST

XMCR

XTCLKEN

QEPF

XPPF

*QUPSEQ

*QSYSEN

*QDNSEQ

L\

I

I

~_

w

u f

«

)L

¢
IPROCESSOR RUNNING

/

A

102 pS =t

W

105 MS

[
™
1

UP SEQUENCE

W

410 205
HS us
-

DOWN SEQUENCE

..Q
BIT 15 WILL ONLY BE SET IF MA
ARE ENABLED, IF THEY ARE NOT
QEPF AND QEPF WILL BE CLEARED BY XMCR.

I

*SIGNAL INTERNAL TO POWER UP/DOWN SEQUENCE CONTROL LOGIC

EPF IS RESET AS SOON AS BIT 15 OF THE ALARM REGISTER IS SET.
CHINE MALFUNCTION INTERRUPTS
ENABLED THE SOFTWARE IGNORES

Figure 11-3. Power Up/Down Timing

€9-vTL91



Appendix A

DEFINITION OF MNEMONICS

APFAIL

APPEN

APPOT

CLKERD

CLKEXT

CLKMO

CLKO

CLK100

CLK2

CLK 20

KMCR

LMOP

LPON

LSTBY

LWAIT
QALM12 thru QALM15
QCHIA thru QCHID
QCLKENB

QCSvV
QDMARQA thru QDMARQD
QEPF

QEPMA

QEPMD

QFSYN

QG

QL
QLDCHA thru QLDCHD

QMAG

QMARA, QMARB
QMEMVIO

QMOP

QNPT

Power failure imminent

Processor power enable control

Power out of tolerance

External control to load data into RDR
External 20-MHz oscillator

Free running 5-MHz clock

Inhibitable 5-MHz clock

Inhibitable 5-MHz clock delayed by 100 nanoseconds
Inhibitable 5-MHz clock delayed by 100 nanoseconds
20-MHz clock

Master clear control to external devices
Output to MEMORY VALID lamp

Output to ON lamp

Output to STBYlamp

Ouiput to WAIT lamp

Alarm register controls

Serial I/0O channels A thru D

Clocks inhibited

Carry save control

DMA memory request controls

Early power failure

Enable processor-to-memory address control
Enable processor-to-memory data control
False sync control

Compare greater than flag

Compare less than flag

Load channels A thru D for serial 1/0 channels
A thru D

Memory access granted for processor request
Memory bank extension controls

Protected memory violated

Memory operational indicator

Interrupt control (branch and link)



QOVF
QPROGLD
QPSWO?2

QPSWO8, QPSWO9
QPSW10, QPSW11
QRARO04 thru QRARI15

QRDENB

QRDO00 thru QRD35

QSMTH

RDO08 thru RD15
SDO00 thru SD15

SEXEC

SFC4 thru SFC17

SLOCK
SMCR
SMTST
SOFF
SONLK
SPRLD
SRESET
SRUN
SSGL
SSTBY
TACL

TACKPCC

TACKSCC
TADRS
TATN
TCMD
TDA
TDACK
TDMAREQ

Overflow flag

Program load control

Machine malfunction indicator control
Program memory bank select controls
Operand memory bank select controls
ROM address

ROM data enable control

ROM data word

Single cycle operation control

Byte outputs to DISPLAYS 1 and 2 on PMP
Outputs from DATA/ADDRESS switches
EXECUTE switch output

FUNCTION switch outputs

Power switch in LOCK position
MASTER CLEAR output

MEMORY TEST output

Power switch in OFF position

Power switch in LOCK position
PROGRAM LOAD switch

RESET switch

Run switch output

Single switch output

Power switch in STBY position

Computer acknowledges interrupt bit to 1/0
devices

Acknowledge control from program control clock
option

Acknowledge control from serial 1/0 option
Acknowledge request bit to 1/0 device
Attention bit to computer from I/O device
Command bit to I1/0 device

Data available control

Data acknowledge control

DMA request



TDMAST
TDMAWRT

TDOA thru TDOD
TDR

TDO00 thru TD15
TEN

TMAA, TMAB
TMAO00 thru TMA14
TMBIA thru TMBID
TMBOA thru TMBOD
TMDO0O thru TMD16
TMEMFLT
TPROPWR

TSR

TSYN

TWAIA thru TWAID
TWAOA thru TWAOD
TWRIA thru TWRID
TWROA thru TWROD
XABORT

XADRA, XADRB
XADROO thru XADR14
XALUCIN

XABO00 thru XAB15
XBB00 thru XBB15
XBCM1

XBCM2

XCHADRA thru XCHADRD
XCHCMDA thru XCHCMDD
XCLKLSB

XCLKMSB

XCLRCIA thru XCLRCID

DMA strobe control

DMA write into memory request

Channels A thru D data out control

Data request

Data and control word to/from 1/0 device
Acknowledge control from memory

Memory address extension control from DMA bus
Memory address word from DMA bus

Channels A thru D message bracket in control
Channels A thru D message bracket out control
Memory data word from DMA bus

Memory power supply fault

Processor power control indicator to external
device

Status request bit to I/0 device

Sync control bit from 1/0 devi~e

Channels A thru D word accept in control
Channels A thru D word accept out control
Channels A thru D word ready in control
Channels A thru D word ready out control
Interrupt request

Memory bank select control from MIF
Address control from MIF

SLU carry input control

A-bus data

B-bus Data

Microinstruction mask field and flag compare control

Branch on external conditions (active during BCT
or BCF instructions)

Channels A thru D address enable control
Channels A thru D data enable control
Clock LSB portion of ALU control

Clock MSB portion of ALU control

Clear channels A thru D interrupt request control

I>
1
(98]



XCLRFLR

XCLRRQA thru XCLRRQD

XCRYINM
XCSV
XCTONE
XCTZRO
XDECTR
XDMAWP
XEDSTP
XEED
XEIFCH
XENBAB
XENMAN
XENRD
XEPFDC
XERARAB
XERDB
XERDSTP
XESFDC
XEVNPTY
XFEQOL

XLA thru XLD

XLDCTR
XLDIR
XLDMAR
XLDMDRL
XLDMDRU
XLDPSW
XLDRAM
XLRXX
XMALF
XMCR
XOSCINH
XPHASO02

Clear flag register

Clear channels A thru D request control
ALU carry

Carry save control

Count equals one

Count equals zero

Decrement repeat counter

DMA write request protect control
External destination clock inhibit control
Enable destination clocks control

Enable fetch instruction operation
External control to enable A-bus onto B-bus
Insert /extract control

Enable ROM data

Enable primary function decode

Enable B-bus multiplexer

Enable ROM data onto B-bus control
External RDR clock inhibit control
Enable secondary function decode

Parity error indicator control

ALU output (from ARC card) equals zero (0)
Enables DISPLAY LEDS

Load request counter

Load instruction register

Load memory address register

Load memory data register lower

Load memory data register upper

Load power status word

Load RAM

Enable external decode address to A-bus
Machine malfunction control

Master clear control

Inhibit 20-MHz oscillator

Memory phase count 2



XPPF

XPROCWP

XQ15

XRDSA

XRDSTP

XRDO00 thru XRD35
XSELAB

XSNGL

XTCLKEN

Primary power failure

Processor write protect control

LSB of 32-bit shift word

Enable extra clock for two-cycle operation
Inhibit RDR clock for multicycle instruction
ROM input to RDR

Input RAR or A-bus data onto B-bus select
Single command control

Inhibit clocks



Appendix B

MICROPROGRAM LISTING DESCRIPTION
MICROPROGRAM PROGRAM LISTING DESCRIPTION

The computer uses a set of machine instructions which are stored in a
Read-Only Memory (ROM). Sequences of these machine instructions, or
microinstructions, are used to form microinstructions. Table f#B-1 summarizes
the microinstruction set of the computer. Items that are underlined are op-
tional and may be omitted along with the preceding comma. Items in lower-
case letters are supplied as parameters by the user; these are explained
below. Uppercase items and punctuation are written as shown. Keyword
modifiers ("DEST=") may be coded in any order, but must, as a group,
follow the last of the positional operands; the keyword and equal sign are
written as shown with the user's choice of modifier following the equal sign.

The three columns on the right of Table B-1 show how the flags can be
set by each instruction. By coding C, V, F, or any combination of these
letters in the "flr" modifier, the user specifies which flags (if any) he wants
loaded during the operation. F indicates that both the G and L flags are
loaded; C and V refer to the C and V flags respectively. Although the load-
ing of the flags depends on the "flr" modifier, the value to be loaded into each
flag depends on the individual instructions, as shown in these three columns.

Cout denotes the carry out of the ALU' -Cout denotes the inverse of Cout,
usually interpreted as "borrow out." Q(15) denotes the LSB of Q; regs (00)
denotes the MSB of regs. 0 indicates that a value of zero is used when load-
ing the flag. Ov indicates the overflow output of the ALU. V+ShOv indicates
that the shift overflow function is ORed into the V flag; shift overflow occurs
when regs (00) is different from the current contents of the C flag. Fsync
indicates that V is loaded from the False Sync input to the Micro-1632; note
that this loading is unconditional, since there is no "flr" modifier on Input
or Output. On Input, when FLR is the destination, Fsync is ORed with the
corresponding input bit. SP indicates that the setting of G and L is for a
single precision result; these instructions should be used for single precision
calculations, and for the least significant word of multiple precision calcula -
tions. DP denotes multiple precision setting of G and L; in this case, the
new values of G and L depend on the current ALU output, as well as the
previous state of G and L. (For example, a multiple precision result is not
zero unless every word of the result was zero.) In the shift instructions,

SP (regs) indicates that the setting of these flags is based on the unshifted
contents of registers.



Table B-1. Summary of Microinstructions

(?cfde Operands and Modifiers C \Y F
LR regd,regs, flr,MOD=mod ,DEST=INHIB 0 0 SP
LRTC |regd,regs,flr, MOD=mod ,DEST=INHIB -Cout ov SP
LROC |regd,regs,flr,MOD=mod,DEST=INHIB 0 0 SP
IR regd,regs, flr , MOD=mod ,DEST=INHIB Cout Ov SP
DR regd,regs,flr , MOD=mod ,DEST=INHIB -Cout ov SP
* AR regd,regs, flr,MOD=mod ,DEST=INHIB Cout Ov SP
* SR regd,regs, flr,MOD=mod ,DEST=INHIB -Cout ov SP
ARQR |regd,regs,flr, MOD=mod,DEST=INHIB Cout ov SP
* AQRR |regd,regs,flr,MOD=mod ,DEST=INHIB Cout Oov SP
* XR regd,regs, flr,MOD=mod ,DEST=INHIB 0 0 SP
* NR regd,regs,flr,MOD=mod ,DEST=INHIB 0 0 SP
* OR regd,regs, flr,MOD=mod ,DEST=INHIB 0 0 SP
LR regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt
LRTC |regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt |
LROC regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt
IR regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt
DR regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt
* AR regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt
* SR regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt
ARQR regd,regs,ST=st,DC=dc,MC=mc, RPT=rpt
* AQRR regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt
* XR regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt
* NR regd,regs,ST=st,DC=dc,MC=mc,RPqut
* OR regd,regs,ST=st,DC=dc,MC=mc,RPT=rpt
*CR regd,regs, flr,MOD=mod -Cout ov SP
LRTCM |regd,regs,flr , MOD=mod,DEST=INHIB -Cout ov DP
LRM |regd,regs,flr,MOD=mod,DEST=INHIB 0 0 DP
IRC regd,regs, flr,MOD=mod ,DEST=INHIB Cout ov DP
DRB |regd,regs,flr, MOD=mod,DEST=INHIB -Cout ov DP
* ARC |regd,regs,flr, MOD=mod,DEST=INHIB Cout ov DP
* SRB |regd,regs,flr,MOD=mod,DEST=INHIB -Cout Ov DP




Table B-1. Summary of Microinstructions (Continued)

8§de Operands and Modifiers C A F
* XRM |regd,regs,flr,MOD=mod,DEST=INHIB 0 DP
* NRM | regd,regs,flr,MOD=mod,DEST=INHIB 0 DP
* ORM | regd,regs,flr,MOD=mod,DEST=INHIB 0 DP
* CRB | regd,regs,flr,MOD=mod -Cout ov DP
CMD | ST=st,DC=dc,MC=mc
NOP
$ MUL |regd,regs,flr Q(15) ov SP
$ MULC | regd,regs,flr Q(15) ov SP
$ DIV |regd,regs,flr -Cout ov SP !
$ RL regd,regs,flr, DEST=INHIB regs(00) | V+ShOv | SP(regs)
$ PLA |regd,regs,flr,DEST=INHIB regs(00) | V+ShOv | SP(regs)
$ PLL |regd,regs,flr, DEST=INHIB regs(00) 0 SP(regs)
$ RR |regd,regs,flr, DEST=INHIB Q(15) | V+ShOV | SP(regs)
$ PRA |regd,regs,flr, DEST=INHIB Q(15) V+ShOv | SP(regs)!
$ PRL regd,regs, flr, DEST=INHIB Q(15) 0 SP(regs)
$ PLZ regd,flr,DEST=INHIB 0 0 0
$ PRZ regd, flr, DEST=INHIB Q(15) 0 0
$ CRYZ | regd,fir,DEST=INHIB 0 0 0
LI regd,imm, flr,MOD=mod ,DEST=INHIB - 0 SP
LITC |regd,imm,flr,MOD=mod,DEST=INHIB 0 ov 0
LIOC |regd,imm,flr,MOD=mod ,DEST=INHIB - 0 SP
* Al regd,imm, flr,MOD=mod ,DEST=INHIB - ov SP
* SI regd,imm, flr ,MOD=mod ,DEST=INHIB - ov SP
*:C1 regd,imm, flr,MOD=mod - ov SP
* NI regd,imm, flr , MOD=mod ,DEST=INHIB = 0 SP l
* Ol regd,imm, flr,MOD=mod ,DEST=INHIB = 0 SP
* XI regd,imm, flr,MOD=mod ,DEST=INHIB = SP
ARQI | regd,imm,flr,MOD=mod ,DEST=INHIB - ov SP
B addr
BCT |cond;addr |

B-3



Table B-1.

Summary of Microinstructions (Continued)

OoP-
Code Operands and Modifiers C A%
BCF | cond,addr

$ BI addr,reg

$ BICF | cond,addr,reg

$ BLK | addr,reg _
OUT | reg,oflag,iflag,MOD=mod,BC=bc - FSync
INP reg,oflag,iflag ,MOD=mod ,BC=be¢ = FSync
Legend:

regd = destination register; regs = source register; flr = flag register

Table B-2 shows the function of each instruction.

Table B-2. Function of Microinstructions
Op-Code Name Function
LR Load Register regd « MOD(regs)
LRTC Load Reg Twos Complement regd <« 0-MOD(regs)
LROC Load Reg Ones Complement regd « (-1) XOR MOD(regs)
IR Increment Reg regd + MOD(regs)+1
DR Decrement Reg regd + MOD(regs)-1
AR Add Reg regd « regd+MOD(regs)
SR Subtract Reg regd + regd-MOD(regs)
ARQR Load Reg With Sum regd + Q+MOD(regs)
AQRR Load Q With Sum q + regd+MOD(regs)
XR Exclusive OR Reg regd « regd XOR MOD(regs)
NR AND Reg regd + regd AND MOD(regs)
OR OR Reg regd « regd OR MOD(regs
CR Compare Reg calculate: regd-MOD(regs)
LRM Load Reg Multiple regd « (MOD(regs)
LRTCM Load Reg Twos Comp Multiple | regd « 0-MOD(regs)-C
IRC Increment Reg With Carry

regd «MOD(regs)+C




Table B-2. Function of Microinstructions (Continued)

Op-Code Name Function

DRB Decrement Reg With Borrow regd « MOD(regs)-C

ARC Add Reg With Carry regd « regd+MOD(regs)+C

SRB Subtract Reg With Borrow regd « regd-MOD(regs)-C

XRM Exclusive-OR Reg Multiple regd « regd XOR MOD(regs)

NRM AND Reg Multiple regd < regd AND MOD (regs)

ORM OR Reg Multiple regd « regd OR MOD(regs)

CRB Compare Reg With Borrow calculate: regd-MOD(regs)-C

CMD Command specified keyword function only

NOP No Operation no operation

MUL Multiply Step if C=0: (regd,Q) +« (regd,Q)/2
if C=1: (regd,Q) <« (regd+regs,Q)

MULC Multiply Correction (regd,Q) « (regd-regs,Q)/2

DIV Divide Step if C=0: (regd,Q) +« (regd-regs,Q)*
{ 2+Cout
if C=1: (regd,Q) « (regd+regs,Q)*

2+Cout

RL Rotate Left (regd,Q) « (regs,Q)*w+regs(00)

PLA Position Left Arithmetic (regd,Q) « (regs,Q)*2

PLL Position Left Logical (regd,Q) « (regs,Q)*2

RR Rotate Right (regd,Q) « Q(15),(regs,Q)/2

PRA Position Right Arithmetic (regd,Q) « C,(regs,Q)/2

PRL Position Right Logical (regd,Q) +« 0,(regs,Q)/2

PLZ Position Left Zeros (regd,Q) « (0,Q)*2

PRZ Position Right Zeros (regd,g) « 0,(0,g)/2

CRYS Carry Save regd « C0/2

LI Load Immediate regd « MOD(imm)

LITC Load Immediate Twos Comp regd + 0-MOD(imm)

LIOC Load Immediate Ones Comp regd + (-1) XOR MOD (imm)

Al Add Immediate regd « regd+MOD(imm)

S1 Subtract immediate regd « regd-MOD (imm)

C1 Compare Immediate calculate: regd-MOD (imm)

NI AND Immediate

regd « regd AND MOD(imm)




Table B.-2. Function of Microinstructions (Continued)

Op-Code Name Function

01 OR Immediate regd + regd OR MOD(imm)

XI Exclusive-OR Immediate regd « regd XOR MOD(imm)

ARQI Load Reg With Immediate Sum | regd + A + MOD(imm)

B Branch RAR <« addr

BCT Branch on Condition True cond false: non operation
cond true: RAR <« addr

BCF Branch on Condition False cond false: RAR <+ addr
cond true: no operation

BI Branch Indexed RAR « addr+reg

BICF Branch Indexed Cond False cond false: RAR +« addr+reg
cond true: no operation

BLK Branch and Link reg <« RAR, RAR + addr

ouT Output output bus <« reg

IN ‘nput reg + input bus

Table B-3 shows the form for each operand and modifier. In the expla-
nation of branch conditions, + indicates that the selected flag register bits
are ORed together. Branch condition 'CTR' specifies a mask of all zeros;
the hardware may be configured to test an external counter when a Branch

on Condition True instruction specified this condition. In the "st" operands,

actions in parentheses are not actually implemented within the hardware.

The notation "(arbitrary meaning)" indicates other functions which are not
implemented in the basic computer.

Note that a number of instructions can appear in two forms, for example
LR and AR. Such instructions can be coded in either form, but no single
instance of such an instruction may use modifiers from both formats. The
"flr, MOD = ..." format is called RR format; the "ST = st, DC = ..." format
is called CT or control format. The instructions which have an immediate
operand ("imm") are called RI or register immediate format instructions.

In instructions marked with a dollar sign ($), both registers must be
internal scratchpad registers; external registers and Q are not allowed.
Branch Indexed, Branch Indexed on Condition False, and Branch and Link
are also marked with a dollar sign, signifying that "reg" must be an internal
scratchpad register. Asterisk (*) marks instructions in which the user may
not specify both registers as external; one or both must be internal or Q.

RI instructions marked with asterisks may not have "regd" an external
register,

w



The folloiwng combination is not allowed in RR format instructions:

1. regs internal
2. regd external
3. MOD applied

Another combination forbidden in RR format is:
1. regs internal
2. regd internal
3. MOD applied
4. F included in "fIr" (F, CF, VF, or CVF)

Still another combination forbidden in RR format is:

1. regs =Q
2. MOD applied

The following is not allowed in RI format:

C included in "flr" (C, CF, CV, CVF)

Table B-3. Assembler Operands and Modifiers

Parameter Meaning Assembler Input
reg Register Operand register symbol (internal or external)
regd Register Operand register symbol (internal or external)
regs Register Operand register symbol (internal or external)
imm Immediate Operand literal exper (0<=imm<=255)
flr Flag Register Control | (default) = no change
F =load G,L according to cur instr
V =load V according to cur instr
VF =load V,G,L according to cur instr
C =load C according to cur instr
CF = load C,G,L according to cur instr
CV =load C,V according to cur instr
CVF =load C,V,G,L according to cur instr
mod Operand Modifier (default) = rno modification

SWAP = swap bytes
INSP = insert byte (lef or right)
EXTB = extract byte (left or right)

EXTO0 = extract digit 0 (leftmost)
EXT1 = extract digit 1

EXT2 = extract digit 2

EXT3 = extract digit 3 (rightmost)

8

o



Table B-3.

Assembler Operands and Modifiers (Continued)

Parameter

Meaning

Assembler Input

dest

cond

addr

Dest Clock Inhibit

Branch Condition

Branch Address

Status Control

Decode Control

Memory Control (or
any synchronous
device)

Output Flag

Input Flag

(default) = 'regd' loaded (except Compare's)
INHIB = 'regd' not changed

CTR = mask is B'0000'
L = mask is B'0001'

G = mask is B'0010'
GL = mask is B'0011'
V = mask is B'0100'
VL = mask is B'0101’
VG = mask is B'0110'
VGL = mask is B'0111'
C = mask is B'1000'
CL = mask is B'1001'
CG = mask is B'1010'
CGL = mask is B'1011'
CV = mask is B'1100'
CVL = mask is B'1101'
CVG = mask is B'1110
CVGL = mask is B'1111'

address expression

(default) = no change

JMC = CVGL + 0, (cond Code « CVGL)
ALM = (Cond Code « Alarms)

JAM = (Cond Code « CVGL)

AMC = (Cond Code <« Alarms), Alarms « 0)
CLR = CVGL « 0

SIE = set interrupt-enable

RIE = reset interrupt-enable

LFG = CVGL « A-Bus(0..3)

IEL = CVGL « A-Bus(0..3), set intrpt-

(default) = normal sequencing
literal expr = decode function (1<dec<=3)

(default) = 0
literal expr =

(arbitrary meaning) (0:mcs =7)

literal expr =

(default) = 0
literal expr =

(arbitrary meaning) (i =oflagi=31)

{
|
[
|
|
|
|
|
|

(arbitrary meaning) (=s=iflag i=31) .

|

B-8



Table B-3. Assembler Operands and Modifiers (Continued)

Parameter

Meaning

Assembler Input

be

rpt

I1/0 Bus Control (or
any 1/0 option)

Instruction
Repetition

(default) = 0
literal expr = (arbitrary meaning) (0§ =bc§=3)

(default) = 0
literal expr = (arbitrary meaning)(0§ =rpts=1)




